

Materials Science and Technology

Electrochemical CO₂ conversion for the synthesis of sustainable fuels and platform chemicals

Francesco Bernasconi, Alessandro Senocrate, Peter Kraus, Nukorn Plainpan, Corsin Battaglia

francesco.bernasconi@empa.ch

Swiss Federal Laboratories for Materials Science and Technology

Technology Briefing- June 26, 2024

Motivation: EU/CH aim at carbon neutrality

More

Swiss approve net-zero climate law

Jun 18, 2023 • Swiss voters have backed a new law to accelerate the country's shift from fossil fuels to renewable energies and reach zero emissions by 2050.

- Phase out fossil fuels
- Electrification with renewables
- Replace fossil carbon feedstock

Close the carbon loop to produce sustainable chemicals/fuels

https://www.swissinfo.ch/eng/politics/swiss-to-decide-on-net-zero-climate-law/48593158 https://www.euronews.com/2020/10/19/several-countries-threatening-eu-s-2050-carbon-neutral-goal-says-mep

CO₂ as a non-fossil carbon source

- Stable gas at RT
- Chemically (almost) inert
- Limited solubility in water

Atmospheric CO₂ as feedstock to produce goods

Strategies to convert CO₂ into products

Thermochemical

- High heat and pressure
- H₂ as co-reactant
- Fossil-fuel heated
- High TRL

Electrochemical

- Ambient conditions
- H_2O as co-reactant
- Couple with renewables
- Low/Med TRL

Photochemical

- Ambient conditions
- H_2O as co-reactant
- Under development
- Low TRL

Electrochemical route requires coupling CO₂ with H₂O and electrons

Target platform chemicals

5

Electrochemical CO₂ conversion using renewables yields sustainable fuels/chemicals.

Jordan, and Wang, Nat. Catal, 2021, 4, 915

CO_2 conversion on gas diffusion electrodes (GDEs)

$$\begin{array}{c} \textbf{CO}_{2}\textbf{R} & \text{CO}_{2} + \text{H}_{2}\text{O} + 2\text{e}^{-} \rightarrow \text{CO} + 2\text{OH}^{-} \\ \hline \textbf{CO}_{2}\textbf{R} & 2\text{CO}_{2} + 8\text{H}_{2}\text{O} + 12\text{e}^{-} \rightarrow \text{C}_{2}\text{H}_{4} + 12\text{OH}^{-} \end{array}$$

A key challenge is to reduce H₂O reactivity to favor CO₂ reduction

Ju, Jiang, Ma, Pan, Zhao, Pagani, Rentsch, Wang, Battaglia, *Adv. Energy Materials*, **2019**, 9, 1901514 Bernasconi, Senocrate*, Kraus, Battaglia, *EES Catalysis*, **2023**, 1, 1009.

Electrospinning: scalable substrate fabrication

Electrospinning offers precise substrate control and scale-up capabilities.

Bernasconi, Senocrate*, Kraus, Battaglia, *EES Catalysis*, **2023**, *1*, *1009*. Yu, Senocrate*, Bernasconi, Künniger, Müller, Pauer, Battaglia, Wang, Materials Design **2023**, 225, 111441.

Parallel analysis of CO₂ conversion products

Standardized data handling facilitates implementation of multiple cells.

Senocrate*, Bernasconi, Kraus Plainpan, Trafkovski, Tolle, Weber, Battaglia, accepted (Nat. Catal.), 2023.

Technological descriptors for CO₂ conversion

Stability is the main limiting factor for the upscale of the technology

Energy demand for CO₂ conversion

E (kJ/mol)	Collection	Conversion	Separation
Thermodynamics	4-20	1′300	
System level	500-1'000	10′000	1′000

The conversion of CO₂ is the most energy-intense step

https://doi.org/10.1016/j.apenergy.2018.02.144 https://asb-automation.ch/

Practical example: electrify 10% C₂H₄ production

Chemical	Production (Mt/year)	
Sulfuric acid	210	$CO_2 \xrightarrow{10000 \text{ kJ/mol}} C_2H_4 \text{ 11 Mt/year}$
Ammonia	180	
Ethylene	110	E ~ 1000 TWh _{year} ~ 2x electricity generated by Germany
Propylene	80	
Methanol	60	
Ethylene glycol	60	

The conversion of CO₂ requires a substantial increase of electricity production

Outlook: challenges and opportunities

Source: Siemens Enegy

Opportunity to use the electrochemical CO₂ conversion as an electricity sink

Conclusions

- The electrochemical CO₂ conversion to platform chemicals is achieved routinely
- Upscale of the technology is promising, catalyst's stability is the main limitation
- Substantial increase in electricification is required to use CO₂ as a feedstock chemical

Alessandro Senocrate

Francesco Bernasconi

Nukorn Plainpan

Peter

Kraus

Corsin **Battaglia**

Thank you for your attention!

Materials Science and Technology

Extras

Comprehensive analysis system for CO₂ reduction

Electrocatalytic performance depends on a huge variety of parameters.

Senocrate*, Bernasconi, Kraus Plainpan, Trafkovski, Tolle, Weber, Battaglia, accepted (Nat. Cat.), 2023.

The flow varies strongly due to H_2 evolution, CO_2 dissolution, product formation. A volumetric flow meter is key to capture the variations and reach accurate FEs.

Significant loss of liquid products evaporating in the gas stream. Electrolyte must be collected immediately and stored sealed.

Senocrate*, Bernasconi, Kraus Plainpan, Trafkovski, Tolle, Weber, Battaglia, accepted (Nat. Cat.), 2023.

Online liquid sampling and analysis

qilent

Online sampling extracts and stores liquids from the electrochemical cell/reactor.

Senocrate*, Bernasconi, Kraus Plainpan, Trafkovski, Tolle, Weber, Battaglia, accepted (Nat. Cat.), 2023.

The need for a standard data pipeline

Automatic parsing and processing of complex, heterogeneous datasets.

Comprehensive dataset on Cu GDEs

Catalyst, electrode and electrolyzer parameters form a complex but rich dataset.

Example of 8 parallel datasets on Ag GDEs

Senocrate*, Bernasconi, Kraus Plainpan, Trafkovski, Tolle, Weber, Battaglia, accepted (Nat. Cat.), 2023.

Ag GDEs: wetting behavior influences selectivity

FE_{co} strongly increases when decreasing substrate pore size

Senocrate*, Bernasconi, Rentsch, Kraft, Trottmann, Wichser, Bleiner, Battaglia, ACS Appl. En. Mat., 2022, 5, 14504.

Lower electrolyte penetration leads to higher FE_{CO} and higher stability

Senocrate*, Bernasconi, Rentsch, Kraft, Trottmann, Wichser, Bleiner, Battaglia, ACS Appl. En. Mat., 2022, 5, 14504.

Substrate pore size and wetting behavior

High water entry pressure means lower electrolyte penetration.

Senocrate*, Bernasconi, Rentsch, Kraft, Trottmann, Wichser, Bleiner, Battaglia, ACS Appl. En. Mat., **2022**, 5, 14504. Bernasconi, Senocrate*, Kraus, Battaglia, *EES Catalysis*, **2023**, 1, 1009.

24

Cu GDEs: small pore sizes increase $C_{\geq 2}$ production

Cu GDEs with small pore sizes show high $FE_{C \ge 2}$. FE for C_2H_4 exceeds 55 %.

Senocrate*, Bernasconi, Rentsch, Kraft, Trottmann, Wichser, Bleiner, Battaglia, ACS Appl. En. Mat., 2022, 5, 14504. Bernasconi, Senocrate*, Kraus, Battaglia, EES Catalysis, 2023, 1, 1009.

Cu GDEs: small pore sizes increase $C_{\geq 2}$ production

Cu GDEs with small pore sizes show high $FE_{C \ge 2}$. Ag GDE show high FE_{CO} .

Senocrate*, Bernasconi, Rentsch, Kraft, Trottmann, Wichser, Bleiner, Battaglia, ACS Appl. En. Mat., 2022, 5, 14504. Bernasconi, Senocrate*, Kraus, Battaglia, EES Catalysis, 2023, 1, 1009.

26

Proposed mechanism

Small pore size substrate

Large pore size substrate

Electrolyte layer thickness controls local CO₂ availability and its mass transport.

Vesztergom, Senocrate*, Kong, Kolivoška, Bernasconi, Zboray, Battaglia, Broekmann, Chimia, 2023, 77, 3.