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Lecture 8 
Reactive-Transport Modeling

O. Burkan Isgor

Software 
development/fitting
tools/kinetic:
Dmitrii Kulik
Dan Miron

Why do we need to model reactive 
transport (RT) processes?
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Why we model RT processes?

Why we model RT processes?

• We have been using conventional (in-spec) SCMs, some 
limestone, etc.

• We have been increasing the use of 

o underutilized, novel, low-carbon footprint binders
 Off-spec SCMs (off-spec fly ash, natural 

pozzolans,  slag, etc.
 Other types of ashes (bottom ash, reclaimed 

ash, agricultural ash, etc.)
 Other industrial and natural products (pumice, 

clays, etc.)

o powder extenders 
• Larger limestone replacement
• Synergies with binders (e.g., limestone + Al-

containing binders)
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Why we model RT processes?

• Do we know how these unconventional 
binders react?

• Maximum reactivity (portion of the 
reactive components)?

• Reactions vs. time

• Can we perform service life modeling of 
concrete produced with these materials?

• Modeling transport of deteriorative 
species (e.g., chlorides, sulfates, etc.)

• Modeling reactive processes (e.g., 
chloride binding, sulfate attack, salt 
damage, carbonation, etc.)

Why we model RT processes?
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Variability of cementitious materials

https://doi.org/10.7267/ft848z051

Variability of cementitious materials

Composition

Reactivity
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Variability of cementitious materials

Reactive Pozzolanic Oxides (RPO)

Some background on transport 
terminology…
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Transport of what?

 Heat
 Moisture
 Ions (e.g. Cl-, OH-, SO4

2-, etc.)
 Gasses (e.g. O2, CO2)

ALL RELATED TO PORES 
AND WATER IN THE 
PORES!

Water in pores
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Why do ions move?

 Diffusion
 Ions move (in water) due to a concentration gradient

 Movement of ions with moving water
 Ions move (with water) that is under hydraulic pressure gradient
 Ions move (with water) due to moisture gradient

 (Electrical) Migration
 Ions move due to electrical potential gradient

 Movement due to ionic interactions
 Ions move due to interactions with other ions (activity)

Ionic diffusion in water

“Blausen 0315 Diffusion” by BruceBlaus
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Advection – ionic movement with water

v > 0

v = rate of flow (m/s)

Question: Why would water move?

Advection – ionic movement with water

FLUX VECTOR (N, J, F, etc.): 
Amount of substance (e.g. ion) passing through per unit 
area per unit time 

Unit: MASS/AREA-TIME (e.g. mol/m2-s, g/cm2-s, etc.)



9

Diffusion flux

Diffusion flux
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Diffusion flux

Advective flux
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Advective-diffusion flux

Migration flux

Ions move due to electrical potential gradient

zi: valance electron number for the ion (e.g. for Cl-, 
z=1)
F: Faraday's constant (96,488 C/mol)
R: Universal gas constant (8.3143 J/mol/K) 
T: Temperature (K)
: electric potential (V)

D z F
c

RT
  

i i
i iN

Question: What are some examples this might apply?
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Activity flux

Question: How important is it?

Total flux in water
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Total flux in water

Question: Can we still use the self 
diffusion coefficient of the ion i in water?

ion i

If not, Di,c=?

Total flux in porous cementitious matrix 

𝐷𝑖, 𝑐

𝐷𝑖

=
𝑟𝑝𝑠

𝑟𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

(Electrical resistivity of pore solution)
(Electrical resistivity of concrete)

Formation factor

𝐹𝐹 =
𝑟𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
𝑟𝑝𝑠 =

1

𝜙𝛽
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Total flux in porous cementitious matrix 

Di,c
஽
௜

ிி

Mass conservation equation

Evaporable water
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Multiphysics problem

Modeling reactions during transport of 
species in a cementitious system…
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Method 1: Explicit integration into PDE

Reaction term

Yuan et al. 2009

Example: chloride binding

Langmuir Isotherm

c = c୤ + cୠ

c௕ =
𝛼c୤

1 + 𝛽c୤

Method 1: Explicit integration into PDE
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Group work: Chloride binding isotherms

Calculate chloride binding isotherms for 
hydrated Portland cement paste

Method 2: Operator splitting

Transport PDE does not have an reaction term:

Reactive processes are solved externally using thermodynamic 
calculations:

Note: This approach requires small 
time steps; therefore, it is 
computationally intensive… 
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Method 2: Operator splitting

Method 2: Operator splitting

Fully saturated, no advection, single phase flow…

Simplified system

Porosity

Diffusivities

Chemical activities
PPM

Pore Partitioning 
Model

(Powers + GEMS)
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Pore Partitioning Model (PPM)

Citations for PPM

https:/doi.org/10.14359/51714466

https://doi.org/10.1016/j.cemconres.2019.105820

http://dx.doi.org/10.1520/ACEM20160038
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Pore partitioning model (PPM)

Pore partitioning model (PPM)
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Pore partitioning model (PPM)

Pore partitioning model (PPM)

0% DOH

50% DOH

100% DOH
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Pore partitioning model (PPM)

Aqueous volume, V

Solid volume, Vs

CSH volume, VCSH Start with: 
Vaq, Vs, VCSH

Water in C-S-H: GEMS vs. Experiments

50% DOH

H NMR

1.25

2.0

JenD: 2.25 3.73 2.81 0.92 0.92/0.67 = 1.37
JenH: 1.33 2.17 1.66 0.51 0.51
TobD: 1.25 2.75 1.56 1.18 1.18
TobH: 0.67 1.50 1.25 0.25 0.25

GEMS

C/S H/Si H/Si H/Si H (mol) 

NMR

2.25

2.81JenD

TobH

TobD
1.56

1.66

TobH

∆

𝝙 𝝙

(C1.5S0.67H2.5)
(C1.3S1H2.17)

(C1.25S1H2.75)
(C0.67S1H1.5)

Extra water 
correction per 1 
mol of C-S-H 
phase

Lothenbach et al. (2015) 
doi:10.1016/j.cemconres.2015.03.019
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Corrections for Vaq, Vs, VCSH

Extra water in CSH:
𝝙H2OCSH = 𝝨ni x 𝝙H2Oi 

Correct volume fractions:

Aqueous:

Solid volume:
vs= (Vs - 𝝙H2OCSH ) / Vin

CSH volume:
vCSH = (VCSH - 𝝙H2OCSH ) / Vin

vaq = (Vaq + 𝝙H2OCSH) / Vin

Pore partitioning model (PPM)

Gel water:
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Pore partitioning model (PPM)

Determine kCSH

kCSH  0.42
(You can use this 
for most cases…)

Pore partitioning model (PPM)

Other gel water 
containing 
phases  
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Pore partitioning model (PPM)

For example:
0.012 mol x 12 H2O 
molecules x 18 
cm3/mol)

Do it for all gel water releasing 
phases and add

Pore partitioning model (PPM)

Cappilary water:
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Pore partitioning model (PPM)

Gel solids:

Pore partitioning model (PPM)

vcs = 1 - vgw - vcw - vgs - vub

Chemical shrinkage:
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53

Group work X: Pore partitioning model

Paste porosity:

p = vgw + vcw + vcs

Non-evaporable water:

vw,NE= (Vw,in / Vin) - vgw - vcw

Pore partitioning model (PPM)

Porosity
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Pore partitioning model (PPM)

Formation Factor

Pore partitioning model (PPM)

Formation Factor
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Pore partitioning model (PPM)

Formation Factor

Pore partitioning model (PPM)
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Group work: Pore partitioning model

Calculate paste properties from GEMS solution

Task: 
1. Use the PPM_OPC file from lecture 8
2. Make a new single file:
 Hydrated cement paste at 100% DoH

- 100 g PC (assume full reaction)
- 50 g water (mixing water)

3. Calculate the equilibrium
4. Follow the PPM steps described in the lecture to calculate 
the volume fractions of gel water, capillary water, gel solids, 
chemical shrinkage; porosity; non-evaporable water content; 
paste resistivity; formation factor (assuming pore solution 
resistivty); and  ionic diffusion coefficients for Na+, Cl-, Ca+2, 
OH2, etc. 

Some RT modeling exercises…
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Validation / benchmarking

Validation / benchmarking
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Source: NETL

High temperature (85oC), high pressure (14.7 psi), 
supercritical CO2, complex brine chemistry

CO2 storage in old oil reservoirs

Ideker,. Isgor, et. al. (2014)

CO2 storage in old oil reservoirs
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Azad et al., Computer & Geosciences, 2016

42 days exposure: alteration depth 0.20 mm.

~1000 years to achieve ~1 m of deterioration Corrosion of the casing and the leakage though 
cement-plug/steel interface is the main concern 

At 42 days

CO2 storage in old oil reservoirs

Acknowledgements…
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Thank you…


