Japan Meteorological Agency's ship-based observations for carbonate parameters in the surface and interior ocean

*Shinji Masuda¹, Keizou Sakurai¹, Kazutaka Enyo¹,Yosuke Iida¹, Atsushi Kojima¹, Toshiya Nakano¹, Naohiro Kosugi², Masao Ishii²

¹Global Environment and Marine Department, Japan Meteorological Agency (JMA), Tokyo, Jap an shinji_masuda@met.kishou.go.jp

²Oceanography and Geochemistry Research Department, Meteorological Research Institute

Japan Meteorological Agency (JMA) has been conducting a series of hydrographic and biogeochemical observations in the western North Pacific to understand the changes in the ocean circulation, air-sea interactions, and biogeochemistry associated with the global change. Data of partial pressure of CO₂ in surface seawater (pCO_2^{sea}) and in overlying air (pCO_2^{air}) have been acquired along the 137°E and 165°E repeat lines since early 1980s and mid-1990s, respectively, on board R/V *Ryofu Maru* and R/V *Keifu Maru*. For the measurement of pCO_2 , we have been using a non-dispersive infrared (NDIR) gas analyzer, a showerhead-type equilibrator and a set of CO₂ standard gases calibrated with WMO mole fraction scale. We have also been making precise measurements of dissolved inorganic carbon (DIC), pH and total alkalinity (TA) in the water columns since 1994, 2003 and 2009, respectively. We have been using a coulometric DIC analyzer and using a spectrophotometric measurement for TA and pH. We have been using the certified reference materials provided by the Scripps Institution of Oceanography.

We are providing various information regarding ocean carbon cycle. The trend of pCO_2^{sea} increase has been observed along 137°E and 165°E repeat lines together with the increase of pCO_2^{air} . The growth rates of pCO_2^{sea} and pCO_2^{air} are 1.2~3.4 and 1.7~2.1 µatm/year, respectively. The rate of pH decrease in surface seawater was about 0.02 per decade in most regions. The accumulation rates of oceanic anthropogenic CO_2 inventory along 137°E and 165°E are approximately 4~12 and 3~13 tC·km⁻²·y⁻¹, respectively. The rates of pH decrease in the ocean interior are 0.003~0.036 per decade (http://www.data.jma.go.jp/gmd/kaiyou/english/oceanic_carbon_cycle_index.html).

The CO₂ data we obtained are publicly available from the WMO's World Data Centre for Greenhouse Gases (WDCGG) operated by JMA and from SOCAT database (http://ds.data.jma.go.jp/gmd/wdcgg/wdcgg.html) (http://www.socat.info/).