Synthesis and evaluation of near real air CO₂ reference gas

Keiichi Katsumata¹, Toshinobu Machida¹, Hitoshi Mukai¹, Jun Sonobe², Megumi Isaji², Tracey Jacksier³, and Adelino Fernandes⁴

¹ National Institute for Environmental Studies, Japan; katsumata.keiichi@nies.go.jp

- ² Air Liquide Laboratories, Japan
- ³ Delaware Research & Technology Center, Air Liquide, USA

⁴ Air Liquide Portugal, Portugal

Laser-based instruments are the widely-used analyzers for measuring atmospheric CO_2 and trace gas mole fractions because of its high precision as well as easiness of operation. However, these measurements are affected by both the isotopic composition of CO_2 (Lee et al., 2006, Tohjima et al., 2009) and by the $O_2/N_2/Ar$ composition of Air (Chen et al., 2010, Nara et al., 2012). Several kinds of "near real air" gas mixtures were synthesized, measured and evaluated using several analyzers.

Gas mixtures of pure CO₂ with adjusted isotope ratios in balance air were used as "near real air" samples: compressed dry natural air gas was used as the "real air" sample. The isotope ratio of pure CO₂ gas was adjusted to $\delta^{13}C = -8.0 \%$ (VPDB) and $\delta^{18}O = +11.9 \%$ (VPDB) by mixing CO₂ gases which had different isotope ratios by Air Liquide. Gas mixtures of containing the pure isotopically adjusted CO₂ and purified natural air (Grade 1, Japan Fine Products) were filled in 10L Luxfer aluminum cylinders at NIES. Gas mixtures of the adjusted isotopically pure CO₂ and CO₂-free natural air (Alphagaz Natural Air, Air Liquide) were also filled in 10L Luxfer aluminum cylinders at NIES. Dry natural air gases were filled in aluminum cylinders by NIES at Tsukuba, Japan (CO₂ ~ 410 ppm, $H_2O < 3$ ppm) and by Air Liquide in Spain (Alphagaz Natural Air, Air Liquide). In these experiments, gas mixtures of CO₂ with fossil fuel combustion origin and purified natural air were used as reference gases. Both the sample gases and reference gases were calibrated using NDIR (LI-6252, Li-COR) against NIES 09 CO₂ scale. Mole fractions of sample gases were corrected for biases due to different CO₂ isotopes ratios between the sample gases and the secondary reference gases because the secondary reference gases were mixtures of fossil fuel combustion CO_2 ($\delta^{13}C = -32.5$ to -25.3 % (VPDB), $\delta^{18}O = -29.4$ to -22.7 ‰ (VPDB)) and purified natural air (Tohiima et al., 2009). To evaluate these samples, they were measured with CRDS (G2401, Picarro and G2101i, Picarro) based on the reference gases.

References

Lee, J.-Y., H.-S. Yoo, K. Marti, D. M. Moon, J. B. Lee, and J. S. Kim: Effect of carbon isotopic variations on measured CO₂ abundances in reference gas mixtures, J. Geophys. Res., 111, D05302, doi:10.1029/2005JD006551, 2006.

Tohjima, Y., Katsumata, K., Morino, I., Mukai, H., Machida, T., Akama, I., Amari, T., and Tsunogai, U.: Theoretical and experi- mental evaluation of the isotope effect of NDIR analyzer on atmospheric CO_2 measurement, J. Geophys. Res., 114, D13302, doi:10.1029/2009JD011734, 2009.

Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C. W., Crosson, E. R., Van Pelt, A. D., Steinbach, J., Kolle, O., Beck, V., Daube, B. C., Gottlieb, E. W., Chow, V. Y., Santoni, G. W., and Wofsy, S. C.: High-accuracy continuous airborne measurements of greenhouse gases (CO₂ and CH₄) using the cavity ring-down spectroscopy (CRDS) technique, Atmos. Meas. Tech., 3, 375–386, doi:10.5194/amt-3-375-2010, 2010.

Nara, H., Tanimoto, H., Tohjima, Y., Mukai, H., Nojiri, Y., Katsumata, K., and Rella, C. W.: Effect of air composition (N_2 , O_2 , Ar, and H_2O) on CO_2 and CH_4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy, Atmos. Meas. Tech., 5, 2689–2701, doi:10.5194/amt-5-2689-2012, 2012.