Simultaneous field-scale in-situ measurements of the four most abundant N_2O isotopocules

Erkan Ibraim^{1, 2}, Benjamin Wolf³, Stephan Henne¹, Charlotte Decock², Dominika Lewicka-Szczebak⁴, Eliza Harris^{1,*}, Béla Tuzson¹, Lukas Emmenegger¹, Johan Six² and Joachim Mohn¹

¹ Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution / Environmental Technology, CH-8600 Dübendorf, Switzerland

² ETH-Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland

³ Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, D-82467 Garmisch-Partenkirchen, Germany

⁴ Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, D-38116 Braunschweig, Germany

* Now at: University of Innsbruck, Institute of Ecology, A-6020 Innsbruck, Austria

Corresponding author: erkan.ibraim@empa.ch

Understanding and quantifying the biogeochemical cycle of N₂O is essential to develop effective N₂O emission mitigation strategies. We present a novel, fully-automated measurement technique that allows simultaneous, high-precision quantification of the four main N₂O isotopocules ($^{14}N^{14}N^{16}O$, $^{14}N^{15}N^{16}O$, $^{15}N^{14}N^{16}O$ and $^{14}N^{14}N^{18}O$) in ambient air. The instrumentation consists of a trace gas extractor (TREX) coupled to a quantum cascade laser absorption spectrometer (QCLAS), designed for autonomous operation at remote measurement sites. All system components have been integrated into a standardized instrument rack to improve portability and accessibility for maintenance. With an average sampling frequency of approximately 1 hr⁻¹, this instrumentation achieves a repeatability of 0.09, 0.13, 0.17 and 0.12 ‰ for $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, $\delta^{18}O$ and site preference of N₂O in ambient air, respectively. The repeatability for N₂O mole fraction measurements is better than 1 ppb (parts per billion, 10⁻⁹ moles per mole of dry air).

This TREX-QCLAS technique was deployed in the framework of the ScaleX campaign 2016 at the TERENO site Fendt, Germany. Isotopic signatures of the emitted N₂O were interpreted in relation to management events and meteorological conditions to shed light into different N₂O source processes. Next, N₂O isotopic information will be evaluated in conjunction with $\delta^{15}N$ values of nitrogen precursors (NH₄⁺, NO₃⁻), and additional soil parameters. Finally, results will be discussed in relation to a biogeochemical soil model (L-DNDC) with an isotope sub-module (SIMONE) developed at IMK-IFU, and a ¹⁵N tracer approach applied by Thünen Institute.