European atmospheric ¹⁴CO₂ activities within the ICOS-RI network

Samuel Hammer¹, S. Conil², Marc Delmotte³, Arjan Hensen⁴, Meelis Mölder⁵, Michel Ramonet³, Marcus Schumacher⁶, T. Gerard Spain⁷, Ingeborg Levin⁸

¹ ICOS Central Radiocarbon Laboratory, Heidelberg University, Heidelberg, Germany

² Direction Recherche & Développement, Andra, CMHM, RD960, 55290 Bure France

³ Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA - Orme des Merisiers 91191 Gif sur Yvette, France

⁴ Energy research Centre of the Netherlands (ECN), Petten, the Netherlands

⁵ Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

⁶ German Meteorological Service, Meteorological Observatory Hohenpeissenberg, Germany

⁷ National University of Ireland Galway, Galway, Ireland

⁸ Institut für Umweltphysik, Heidelberg University, Heidelberg, Germany

Radiocarbon in atmospheric CO_2 has successfully proven to be a very powerful tracer for carbon cycle studies and for quantifying CO_2 originating from the combustion of fossil fuels. The European research infrastructure ICOS (ICOS-RI.eu) has thus selected ¹⁴CO₂ as one of the keyspecies to be sampled at all atmospheric ICOS class 1 stations and to be analysed at the ICOS Central Radiocarbon Laboratory. ICOS follows a two-pronged sampling strategy for ¹⁴CO₂. On the one hand, flask samples will be collected during predefined meteorological conditions; on the other hand continuous, two-weekly integrated samples will be collected to estimate long-term trends of fossil fuel CO_2 at the sites.

We present the first results of ICOS integrated ¹⁴CO₂ samples from 10 European stations, starting in 2015. These measurements provide an overview of the current ¹⁴CO₂ levels at predominantly background stations and illustrate the influence from regional fossil fuel sources at individual stations.