Towards including atmospheric CO_2 data from the oceanic community into the global high-accuracy atmospheric CO_2 network

Penelope A. Pickers¹, Nathalie Lefèvre², Vassilis Kitidis³, Colm Sweeney⁴, David R. Munro⁵, Britton B. Stephens⁶, Denis Diverrès⁷, Dave Lowry⁸, Rebecca Fisher⁸, Rebecca Brownlow⁸, Gordon Brailsford⁹, Kim I. Currie¹⁰, Zhaohui Chen¹, Parvadha Suntharalingam¹ and Ute Schuster¹¹

¹ Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK

² Sorbonne Universités (UPMC, Univ Paris 06)-IRD-CNRS-MNHN, LOCEAN, Paris, France

³ Plymouth Marine Laboratory, Plymouth, UK

⁴ Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA

⁵ Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, Colorado, USA

⁶National Center for Atmospheric Research, Boulder, Colorado, USA

⁷ IRD, centre de Bretagne, BP 70, 29280 Plouzane, France

⁸ Department of Earth Sciences, Royal Holloway University of London, Egham, UK

⁹National Institute of Water and Atmospheric Research, Wellington, New Zealand

¹⁰ National Institute of Water and Atmospheric Research, Dunedin, New Zealand

¹¹ Department of Geography, University of Exeter, Exeter, UK

There are currently more than 100 sites making high-accuracy measurements of atmospheric CO₂, and yet oceanic regions remain severely under-sampled. Many of these oceanic regions, however, are relatively densely sampled by underway systems deployed on research vessels and ships of opportunity that typically measure the dry mole fraction of CO₂ of both air equilibrated with surface seawater and the overlying atmosphere. The accuracy of the atmospheric CO₂ data from these ship-based underway CO₂ systems ($uwCO_{2atm-dry}$) does not typically meet the rigorous standards of the atmospheric community, as set out in the World Meteorological Organization recommendations. Improving and validating the quality of $uwCO_{2atm-dry}$ data will most likely provide mutual benefits to both the oceanic and atmospheric CO₂ inversion in the North Atlantic region leads to a reduction in the posterior CO₂ flux uncertainty when compared to using GLOBALVIEW-CO2 data

(<u>https://www.esrl.noaa.gov/gmd/ccgg/globalview/co2/co2_intro.html</u>). Improved uwCO_{2atm-dry} data quality may also enable the oceanic community to more easily identify offsets/biases between measurements made by different ships that are then combined into global data products, such as the Surface Ocean CO_2 Atlas (<u>http://www.socat.info/</u>).

Here, we quantify the offsets between $uwCO_{2atm-dry}$ data and high-accuracy CO_2 measurement system data from five ships. We compare these CO_2 offsets to those from the Cucumbers intercomparison programme (<u>http://cucumbers.uea.ac.uk/</u>), to determine whether some $uwCO_{2atm-dry}$ data can already be reliably included in atmospheric CO_2 inversions. We also show the results of a 'Target Tank' comparison exercise between two systems installed on the Cap San Lorenzo container ship, which indicate that incomplete sample air drying can be the dominant contributor to inaccuracies in $uwCO_{2atm-dry}$ data. Lastly, we make several recommendations for improving the quality of $uwCO_{2atm-dry}$ data, which we hope will facilitate more discussion and collaboration between atmospheric and oceanic communities regarding atmospheric CO_2 measurement.