Calibration strategies for FTIR and other IRIS instruments for accurate $\boldsymbol{\delta}^{13} \mathrm{C}$ and $\boldsymbol{\delta}^{18} \mathrm{O}$

 measurements of CO_{2} in air
Edgar Flores

Bureau International des Poids et Mesures (BIPM), Pavillon de Breteuil, F-92312 Sèvres Cedex, (33) 1450770 92, edgar.flores@bipm.org

This talk will describe calibration strategies in laboratory conditions that can be applied to ensure accurate measurements of the isotopic composition of the CO_{2} in air, expressed as $\delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ on the VPDB scale, with either FTIR (in this case a Vertex 70 V (Bruker)) or an Isotope Ratio Infrared Spectrometer (IRIS) (in this case a Delta Ray (Thermo Fisher Scientific)). In the case of FTIR, two standards with known CO_{2} mole fraction, and isotopic composition, in air are sufficient to make accurate measurements with standard uncertainties of 0.05% and 0.77% for $\delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ respectively at a nominal CO_{2} mole fraction of $400 \mu \mathrm{~mol} / \mathrm{mol}$ in air. In the case of the IRIS system, two pure CO_{2} gas isotope standards, diluent air and two standard of CO_{2} certified for mole fraction and isotopic composition ($\delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$) are sufficient to make accurate measurements of $\delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ with standard uncertainties of 0.29% and 0.60% respectively. The calibration strategy was validated using a set of five traceable Primary Reference Standards. The standards, produced with whole air or synthetic air as the matrix over the mole fraction range of 378-420 $\mu \mathrm{mol} \mathrm{mol}-1$, were prepared and/or certified either by the National Institute of Standards and Technology (NIST) and the National Physical Laboratory (NPL). The standards were prepared in three subsets of different $\delta^{13} \mathrm{C}$ values between -35% and -1% using pure CO_{2} obtained from specific sources, namely: combustion; Northern Continental and Southern Oceanic Air and a gas well source. The isotopic composition of all standards was value assigned at the Max Planck Institute for Biogeochemistry Jena (MPI-Jena).

