JRAS-06: Keeping up with changing internationally-distributed, light-element stable isotopic reference materials

Heiko Moossen^{1,#}, Tyler B. Coplen², Haiping Qi², Harro Meijer³, Jürgen Richter¹, Willi A. Brand¹

¹ Max-Planck-Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena, Germany

- ² U.S. Geological Survey, 431 National Center, Reston, Virginia 20192, United States
- ³ Centrum voor Isotopen Onderzoek (CIO), Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands

Corresponding author: heiko.moossen@bgc-jena.mpg.de

One of the most critical aspects of measuring carbon isotopic signatures of atmospheric CO₂ is the stringent standardisation procedure which is required. Without it, inter-laboratory δ^{13} C comparisons of atmospheric CO₂ are difficult at best, and impossible at worst. Following the "principle of identical treatment" (IT principle; Werner and Brand, 2001), isotopic reference materials for atmospheric CO₂ analysis should be chemically identical to analysed samples. For the last 10 years, the stable isotope laboratory at the Max-Planck-Institute for Biogeochemistry (BGC-IsoLab) has offered the Jena Reference Air Set (JRAS-06) to the scientific community. CO₂ for this set of reference materials is evolved from carbonates, including NBS 19 calcite (δ^{13} C = +1.95 mUr and δ^{18} O = -2.2 mUr) that anchors one end of the VPDB-LSVEC carbonisotope scale and LSVEC lithium carbonate (δ^{13} C = -46.6 mUr), and it is diluted into CO₂-free matrix air. Thus, an air-CO₂ scale has been produced that is linked directly to the VPDB-CO_{2(gas)} scale. Use of JRAS-06 enables laboratories to follow the identical treatment principle and report their findings on the VPDB-CO_{2(gas)} scale.

The year 2016 was a turbulent year for the VPDB oxygen-isotope scale and the VPDB-LSVEC carbon-isotope scale. The distribution of NBS 19 was discontinued because its supply **IAEA-603** was nearly exhausted. А new calcite, (Carrara marble: https://nucleus.iaea.org/rpst/referenceproducts/referencematerials/Stable Isotopes/13C18and7 Li/IAEA-603/index.htm: $\delta^{13}C = +2.46 \pm 0.01$ mUr and $\delta^{18}O = -2.37 \pm 0.04$ mUr) was introduced by the International Atomic Energy Agency as an internationally-distributed, secondary isotopic reference material to anchor measurement results to the carbon- and oxygen-isotope scales. Furthermore, LSVEC was deemed inappropriate as a second scale anchor because it can react with atmospheric CO₂, thereby affecting its carbon isotopic signature. BGC-IsoLab is currently involved in a collaborative effort to quantify the δ^{13} C value of a high purity calcium carbonate with a δ^{13} C value of ~-42 mUr that is intended to serve as an internationally-distributed, secondary isotopic reference material to anchor measurement results to the VPDB-LSVEC carbon-isotope scale. This new material also can be used to anchor the JRAS-06 scale. Here, we present preliminary results on this new high purity calcium carbonate whose δ^{13} C value does not change with exposure to atmospheric CO₂. Additionally, we discuss some considerations that need to be made when determining isotope-delta values of secondary isotopic reference materials.