

Stützen aus Buchen-Brettschichtholz mit und ohne Stahlbewehrung

K. Sroka^{1) 2)}, P. Palma¹⁾, R. Steiger¹⁾, T. Ehrhart³⁾, A. Frangi²⁾, T. Strahm³⁾, E. Gehri⁴⁾

¹⁾ Empa, Abt. 303 Ingenieur-Strukturen

²⁾ ETH Zürich, Institut für Baustatik und Konstruktion

³⁾ Schnetzer Puskas Ingenieure

⁴⁾ neue Holzbau AG

⁵⁾ ETH Zürich, Prof. emeritus, Dr. h.c.

Inhaltsübersicht

- Anwendungspotential
- Versuche
- FE-Modell
- Parameterstudien
 - Stützen: Schlankheit, Querschnittsabmessungen, BSH-Festigkeitsklasse, Exzentrizität
 - Bewehrung: Anordnung, Bewehrungsgrad
- Bemessung mit dem Ersatzstabverfahren (EN 1995-1-1, SIA 265)
- Schlussfolgerungen

Anwendungspotential

Anwendungspotential

Hochleistungsstützen: Buchen-BSH + Stahlarmierung

Fotos: René Steiger

Industriebau

Beispiel: Werkshalle Beer Holzbau

(Abplanalp 20, Beer Holzbau 2016 & 2017)

Mehrgeschossiger Hochbau

Verhindern extrem grosser Stützenquerschnitte

Potential: Gebäudehöhe

<u>nur</u> basierend auf vertikalem Tragwiderstand der Stützen

Annahmen:

- Wohnhaus, Holzgebäude mit Betonkern
- Horizontale Lasten: Betonkern (nicht berechnet)
- Stützenraster: 2.85 m x 4.00 m
- $A_{\text{Stütze}} = 200 \text{ mm x} 200 \text{ mm}, L_{\text{eff}} = 2'400 \text{ mm}$
- Vertikale Lasten: SIA 260:2013, SIA 261:2014
- Tragwiderstand der Stützen: SIA 265:2012, EN 14080:2013, Ehrhart (2019)

49 Geschosse		
	GL48h 36 Geschosse	
		GL32h 25 Geschosse

GL48h + 4 Ø20 mm

Potential: Differentielle Stauchung zum Betonkern

	GL24h	GL48h	GL55h + 4Ø20mm	C30/37
E _{c,0,mean} [N/mm ²]	11′500	15′400	23′300	33'000
$\delta_{\text{Geschoss}} = \frac{NL}{EA} \text{[mm]}$	2.09	1.56	1.03	0.73
$\delta_{20~{ m Geschosse}}$ [mm]	41.7	31.2	20.6	14.5
$\delta_{ m diff}$ [mm]	+27.2	+16.6	+6.1	-
	100%	61.0%	22.4%	-

Annahmen:

- Holzgebäude mit Betonkern, 20 Geschosse
- A_{Stütze} = 200 mm x 200 mm, L = 2'400 mm
- Vertikale Last pro Stütze: N = 400 kN
- Steifigkeiten: EN 14080:2013, Versuche (Steiger 2018, Ehrhart 2019), EN 1992-1-1:2004

Empa Technology Briefing

Versuche

Stahlqualität

 Verhindern von Stahlfliessen bevor der maximale Tragwiderstand des Holzquerschnittes erreicht wird:

Wahl von Ankerstahlstäben ST900/1100 bzw. ST950/1050

Versuche an gedrungenen Stützen

Druckfestigkeit (EN 408)

GL55h Eckbewehrung n = 3

GL40h / GL48h / GL55h n = 7

(Versuche an unbewehrten Stützen: Ehrhart 2019)

Versuche an gedrungenen Stützen

idealer Bewehrungsgrad?

Versuche an gedrungenen Stützen

(Ehrhart 2019, Sroka et al. 2023a & 2023b)

idealer Bewehrungsgrad?

Versuche an schlanken Stützen

Planmässige Imperfektion: L_{eff}/500

Versuche an schlanken Stützen

(Ehrhart 2019, Sroka et al. 2023a & 2023b)

Numerische Simulationen

(Glos et al. 2004, Sroka et al. 2023a & 2023b)

Diskretisierung

OpenSees & Python

Querschnitt

Patch Timber fibre σ_0 (Glos et al. 2004) ε_0 Steel fibre ε_0

Meshing & Materialmodelle

Empa Materials Science and Technology

Grafik: Pedro Palma

Empa Technology Briefing

Patch = Gruppe von *fibres*

Katharina Sroka | 2023-07-05 | 16

Vergleich Modell / Experiment

17

(Ehrhart 2019, Sroka et al. 2023a & 2023b)

Vergleich Modell / Experiment

(Ehrhart 2019, Sroka et al. 2023a & 2023b)

Parameterstudien

(Sroka et al. 2023a & 2023b)

Anfangsauslenkung & Stützenquerschnitt

(Sroka et al. 2023a & 2023b)

(Sroka et al. 2023a & 2023b)

200 x 200

Bemessung: Ersatzstabverfahren (EN 1995-1-1, SIA 265)

Bemessungsmodell

(Ehrhart 2019, Sroka et al. 2023a & 2023b)

Ersatzstabverfahren (EN 1995-1-1:2004):

$$R_{\rm c,0} = k_{\rm c} \cdot f_{\rm c,0,d} \cdot A_{\rm hybrid}$$
$$k_{\rm c} = \frac{1}{k + \sqrt{k^2 - \lambda_{\rm rel}^2}}$$
$$k = 0.5 \cdot \left[1 + \beta_{\rm C} \cdot (\lambda_{\rm rel} - \lambda_{\rm rel,0}) + \lambda_{\rm rel}^2\right]$$

- β_C: Imperfektionsbeiwert, beeinflusst wie steil die Knickkurve abfällt
- $\label{eq:lambda} \begin{array}{l} \lambda_{\rm rel,0}: \mbox{ kritische bezogene Schlankheit,} \\ k_{\rm c} < 1.0 \mbox{ für } \lambda_{\rm rel} > \lambda_{\rm rel,0} \end{array}$

Anpassung für hybriden Querschnitt:

$$n = \frac{E_{\text{Stahl}}}{E_{\text{c,0,mean}}} = \frac{210}{15.7} = 13.4$$
$$i_{\text{hybrid}} = \sqrt{\frac{I_{\text{hybrid}}}{A_{\text{hybrid}}}} = \sqrt{\frac{I_{\text{brutto}} + (n-1)I_{\text{Stahl}}}{A_{\text{brutto}} + (n-1)A_{\text{Stahl}}}}$$
$$\lambda_{\text{rel}} = \frac{L_{\text{eff}}}{\pi \cdot i_{\text{hybrid}}} \cdot \sqrt{\frac{f_{\text{c,0}}}{E_{\text{c,0}}}}$$

Bemessungsmodell

(Ehrhart 2019, Sroka et al. 2023a & 2023b)

Tragwiderstand R_{c,0} [kN]

Ersatzstabverfahren (EN 1995-1-1:2004):

- Berechnung auf Mittelwertsniveau: Vergleich mit Versuchsergebnissen
- $\beta_{\rm C} = 0.1$ und $\lambda_{\rm rel,0} = 0.3$: Werte für BSH (EN 1995-1-1:2004), Datengrundlage Nadelholz
- für (un-)bewehrtes Buchen-BSH auf der unsicheren Seite!

Bemessungsmodell

(Ehrhart 2019, Sroka et al. 2023a & 2023b)

Tragwiderstand R_{c,0} [kN]

Empa Materials Science and Technology

Ersatzstabverfahren (EN 1995-1-1:2004):

$$R_{c,0} = k_{c} \cdot f_{c,0,\text{mean}} \cdot A_{\text{hybrid}}$$
$$k_{c} = \frac{1}{k + \sqrt{k^{2} - \lambda_{\text{rel}}^{2}}}$$
$$k = 0.5 \cdot \left[1 + \frac{\beta_{C}}{k} \cdot \left(\lambda_{\text{rel}} - \frac{\lambda_{\text{rel},0}}{k}\right) + \lambda_{\text{rel}}^{2}\right]$$

 $\beta_{\rm C} = 0.25$ und $\lambda_{{
m rel},0} = 0.25$: vorgeschlagen für Buchen-BSH (Ehrhart 2019)

Schlussfolgerungen

Schlussfolgerungen

- Stahlbewehrung
 - erhöht die Leistung von Buchen-BSH-Stützen nochmals signifikant
 - erhöht Steifigkeit und Duktilität
 - ermöglicht einfache Verbindungen zu anderen Bauteilen
- Zentrische Bewehrung einfach herstellbar, jedoch nicht sehr wirksam
- Eckbewehrung:
 - ≥36% mehr Tragwiderstand auch bei schlanken Stützen ($\rho = 3.14\%$)
 - Brandwiderstand beachten!
- FE-Modell liefert gute Schätzungen der Traglasten
- Bemessung von (stahlbewehrten) Buchen-BSH-Stützen mit dem Ersatzstabverfahren möglich, angepasste Parameter: $\beta_c = 0.25$; $\lambda_{rel.0} = 0.25$

Literaturverzeichnis

- Abplanalp, B., Strahm, T., Rohner, T. (2019) *Einsatz von Buchen-Brettschichtholz in hochbelasteten Anwendungen: Demonstrationsobjekt*. Abschlussbericht für BAFU.
- Beer Holzbau (2016) Projekt FachWerk Ostermundigen, Baufortschritt Juni 2016. <u>https://www.beer-holzbau.ch/aktuelles/fachwerk-ostermundigen/tagebuch/event/Fachwerk Juni</u> [6.7.2023].
- Beer Holzbau (2017) Projekt FachWerk Ostermundigen, Baufortschritt Mai 2017. <u>https://www.beer-holzbau.ch/aktuelles/fachwerk-ostermundigen/tagebuch/event/fachwerk_Mai17</u> [6.7.2023].
- Ehrhart, T. (2019) *European beech glued-laminated timber*. Doctoral Thesis, ETH Zurich.
- Glos, P., Denzler, J.K., Linsenmann, P.W. (2004) Strength and stiffness behaviour of beech laminations for high strength glulam.
 CIB-W18 Meeting 37.
- Sroka, K., Palma, P., Steiger, R., Ehrhart, T., Frangi, A., Strahm, T., Gehri, E. (2023a) Unreinforced and steel-reinforced columns made of European beech glued-laminated timber, in: Proceedings of the 2023 World Conference on Timber Engineering (WCTE 2023). Presented at the 2023 World Conference on Timber Engineering (WCTE 2023), Oslo, Norway.
- Sroka K., Palma P., Steiger R., Strahm T., Gehri E. (2023b) *Steel-reinforced columns made of European beech glued-laminated timber*. Manuscript submitted for publication.