Willkommen Welcome Bienvenue

UNIVERSITÄTSSPITAL BERN HÔPITAL UNIVERSITAIRE DE BERNE $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT

ARTORG CENTER

BIOMEDICAL ENGINEERING RESEARCH

BERN

Materials Science and Technology

Combining bone proteotype and multiscale extracellular matrix properties for improved clinical fracture risk prediction

Dr. Jakob Schwiedrzik, Group Leader Architectured Materials Laboratory for Mechanics of Materials and Nanostructures

Motivation

Total *fragility fracture** number across *EU6***:

* fractures that result from low-level mechanical forces that would not ordinarily result in fracture

** EU6 nations: France, Germany, Italy, Spain, Sweden, and the UK

[#] Major osteoporotic fracture (hip, spine, humerus, or forearm fractures)

Motivation

合本 WOMEN OVER 50 WILL EXPERIENCE Ouch! OSTEOPOROTIC FRACTURES. AS WILL 合本 MEN.

www.iofbonehealth.org

Van Rietbergen et al., J Bone Min Res (2003)

Imbalance of bone remodeling

- Loss of bone mass
- Changes in bone quality*:
 - Microstructure
 - Microcrack density
 - Tissue organization and properties

* bone quality is the combination of various parameters contributing to fracture resistance

Fracture risk assessment in clinics

Empa Materials Science and Technology

Current methods of assessing *bone density and fracture risk* in clinics:

Bone parameters	Methods	Disadvantages
Bone mineral density (BMD), geometry, microarchitecture	 Dual-energy X-ray absorptiometry (DXA) Quantitative computer tomography (QCT) variations: HR-QCT, μ-CT 	 Scans are affected by many artefacts High radiation doze: from 5 µSv (HR-QCT) up to 1.2 mSv during hip QCT
		Choksi et al. Clin Diabetes Endocrinol. (2018) A. Marques et al., Ann. Rheum. Dis. (2015) R. Krug et al., Radiol. Clin. North Am. (2010)
BMD + Medical history	• FRAX	• Same as DXA/QCT J.Kanis et al., Bone (2009)
BMD, structure, and estimated strength	• QCT-based Finite Element models (FE)	• High radiation dose, average material properties used in simulations F. Johannesdottir et al., Curr Osteoporos Rep (2018)

State-of-the-art of multiscale bone characterization

Bone from a materials science perspective

Mechanics

Casari et al., Acta Biomat., 2020

Schwiedrzik et al., Nat Mat. (2014)

Failure mechanisms

Casari et al., Acta Biomat., 2020

Composition and microstructure

Kochetkova & Peruzzi et al., Acta Biomat., 2021

Schwiedrzik et al., Acta Biomat., 2017

Materials science meets personalized health

Can we use materials science methods to quantify bone quality?

Examine human bone

- multiscale morphology and composition,
- proteotype,
- and micromechanical properties
- of patients who underwent total hip arthroplasty (THA).
- Correlate multimodal dataset with clinical information of each individual patient

Hypothesis: integration of microscale properties and proteotype data can help to assess fracture risk and tailor treatments to **personal** needs based on screening of bone biopsies taken during surgery.

Study overview

Patient cohort

- Indicators:
 - Age, Gender, Femur side
 - Primary, and secondary diagnoses
 - Blood tests results: blood type, electrolytes, metabolites, hematogram
- Primary diagnoses: coxarthrosis, fall fracture.
- Secondary diagnoses: Obesity/Cachexia, Hypertension, Diabetes Type 2.

Biopsy collection

60 biopsies from total hip arthroplasty (THA)

Bone morphology by micro-CT

Cortical region:

- Cortical thickness
- Tissue mineral density
- Bone mineral density
- Bone volume/total volume
- Anisotropy

- Trabecular region:
- Trabecular thickness
- Trabecular separation
- Connectivity

→ Comparison to clinically available techniques (QCT, DXA)

ECM proteotype analysis

- Quantitative label-free proteomics analysis of bone extracellular matrix proteins
- Post-translational modifications:
 - serine/threonine/tyrosine phosphorylation,
 - proline hydroxylation

Proteins of interest:

NH2

Phospho-serine

Collagen: Type I, III, V

`OH

HO-P

ÓН

NH₂

Phospho-threonine

H₃C

 <u>Non-collagenous proteins (NCP)</u>: Osteocalcin, Osteopontin, Fibronectin, Thrombospondin-2, Matrix gla protein, Bone sialoprotein II, decorin

 \rightarrow Role of collagen and NCP in bone quality

МН₂ОН

Phospho-tyrosine

hydroxyproline

Polarized Raman Spectroscopy

→ Bone matrix composition and microstructure

Micromechanical experiments

Nanoindentation

- Allows measuring local hardness and modulus
- Complex stress field below the tip
- Contact area function assumptions

P.K. Zysset et al., J. Biomech. (1999)

Micropillar compression

- Flat punch indenter tip, micropillar with known geometry
- Uniaxial stress field in the volume of interest
- Elastic and post-yield properties

Schwiedrzik et al., Nat Mat. (2014)

→ Mechanical properties of individual bone lamellae

Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues

- **Development of the qPRS method** that allows measuring local MCF angle with uncertainty <10°
- Unique **spectrum of microscale mechanical data** for MCF orientations from 0° to 82°

Kochetkova & Peruzzi et al., Acta Biomat. 2021

Empa

Materials Science and Technology

Compression tests on bovine cortical bone micropillars with known mineralized collagen fibril angles

Elastic modulus (A) and yield stress (B) vs. collagen fibril orientation θ :

High-throughput experiments on human biopsies

1000

800

micropillars

10 µm

Raman shift (cm⁻¹ Microscope

30000 site-matched polarized Raman

spectroscopy measurements

Nanoindenter w/ controlled humidity for **near-physiological conditions**

Data analysis

- Database including multimodal experimental and clinical patient information.
- Identification of significant differences between patient groups
- Search for trends in the multimodal dataset using principal component analysis and other unsupervised machine learning methods.

Integration of multiscale morphology and properties with proteotype can help to assess fracture risk and tailor treatments to personal needs based on a single bone biopsy.

Conclusion

- Understanding bone's multiscale mechanical behaviour aims at predicting patient-specific fracture risk more accurately
- We use high throughput biopsy screening using Raman and micromechanics analyses to build up a database of tissue properties for different pathologies
- Normalizing the micromechanical properties by average fibril angle and mineralization helps to reduce apparent data scatter
- Adding information on the proteotype allows investigating the role of specific proteins in bone quality and fracture risk.
- In the long run, alternative non-invasive predictors of the tissue properties are sought to improve clinical diagnostics

UNIVERSITÄT BERN ARTORG CENTER

BIOMEDICAL ENGINEERING RESEARCH

Thank you for your attention!

Acknowledgements:

Prof. Dr. Philippe Zysset, University of Bern Prof. Dr. Klaus-Arno Siebenrock, Inselspital Prof. Dr. Michel Calame, Empa Prof. Dr. Antonia Neels, Empa

Prof. Dr. Beat Neuenschwander, BFH Prof. Dr. Jörn Dengjel, University of Fribourg Dr. Markus Hanke, Inselspital Prof. Dr. Bernd Wollscheid, ETH Zürich

Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung

Composition & morphology analysis: Polarized Raman Spectroscopy (PRS)

Calibrating PRS on model material for quantitative microstructural analysis

- Mineralized turkey leg tendon (MTLT) nature model material
- Out-of-plane angles θ of mineralized collagen fibrils were measured with SAXS

Spectral anisotropy parameter vs polarization angle

for different MTLT orientations:

 $\theta^{err} = 9.7^{\circ}$

Bone ECM	Expressed from	Function in bone tissue	Reference
Organic ECM Collagenous protein			
Type I collagen	Osteoblast	-Scaffold for bone cells -Maintain bone strength	(Saito and Marumo, 2015)
		-Promote bone formation -Regulate collagen fibrillogenesis	(Fonseca et al., 2014)
Types III and V collagen Noncollagenous protein	Bone	-Promote bone	(Garnero, 2015)
Biglycan	Osteoblast	 Promote collagen fibrillogenesis Promote bone formation 	(Moorehead et al., 2019)
Decorin	Osteoblast	 Promote collagen fibrillogenesis Promote bone formation 	(Coulson-Thomas et al., 2015)
Keratocan	Osteoblast	-Promote mineral deposition rates	
Asporin	Articular cartilage or periodontal tissue	-Promote collagen mineralization	(Kalamajski et al., 2009)
γ-carboxyglutamic acid- containing proteins			
Osteocalcin	Osteoblast	 Regulate calcium metabolism Indicate bone formation 	(Mizokami et al., 2017)
Matrix Gla Protein (MGP)	Osteoblast, osteocyte, and chondrocyte	-Inhibit bone formation and mineralization	(Kaipatur et al., 2008)
Periostin	Osteoblast and precursor cells	 Regulate collagen fibrillogenesis Maintain bone strength 	(Wen et al., 2018)
Glycoproteins			
Osteonectin	Osteoblast	-Promote bone formation and mineralization -Regulate collagen fibrillogenesis	(Rosset and Bradshaw, 2016)
Thrombospondins	Osteoblast	-Maintain biomechanical properties -Promote bone formation	(Delany et al., 2000) (Delany and Hankenson, 2009)
R-spondins	Bone	-Regulate collagen libriliogenesis -Promoter Wnt/β-catenin signaling -Regulate bone development	(Shi et al., 2017)
Small integrin-binding ligand <i>N</i> -linked			
glycoproteins/SIBLINGs			
BSP	Mineralized tissues	-Promote bone formation and mineralization	(Marinovich et al., 2016)
OPN	Osteoblast, odontoblast and osteocyte	-Promote bone formation and mineralization	(Singh et al., 2018)
DMP1	Osteocyte and dentin	-Regulate phosphate metabolism -Promote bone mineralization	(Jani et al., 2016)
MEPE	Osteocyte and dentin	-Regulate phosphate metabolism -Promote bone mineralization	(Zelenchuk et al., 2015)
Inorganic ECM			
Hydroxyapatite	Bone	-Biomineralization	(Tavafoghi and Cerruti, 2016)