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Chapter 1

Introduction

1.1 Motivation

In recent years, the impact of additive manufacturing (AM) grew largely.[10]
It is a new production method with many interesting new possibilities com-
pared to conventional manufacturing. Its unique characteristics make it es-
pecially interesting for specific applications in the fields of aerospace/space
or biomedical engineering. It brings advantages like an incomparably large
design freedom and the possibility to manufacture extremely lightweight
parts, which qualify this technology to fabricate a wide range of function-
ally integrated parts.[10] Process details are discussed in section 1.2.

In particular, it is possible to create cellular structures to a predefined stiff-
ness and porosity. With this flexibility, AM is highly interesting for the fab-
rication of medical implants. With the high porosity, the structures enable
possible bone ingrowth and the surface coating of certain well-suited areas
with pharmaceutical active agents such as pain killers or anti-inflammatory
drugs. The adjustability of the structure’s stiffness provides a solution to
possibly minimize the risk of bone degeneration around the implant due to
stress shielding effects.

The production process of AM is comparable to a welding process. There-
fore, the mechanical properties of additively manufactured material differ
significantly compared to conventionally manufactured materials. Numer-
ous ongoing researches try to describe the material properties of AM materi-
als. Anisotropic material behaviour and often inferior mechanical properties
are reported.

Most studies research the behaviour under static loads and only a few in-
vestigate the fatigue behaviour properties. Tests have shown that even if a
cellular structure behaves excellently under static loading, it is often prone
to fail under comparably small dynamic loads.[15] & [6]
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1. Introduction

1.2 Additive Manufacturing

In contrast to conventional manufacturing - which starts out from a block
of solid material and removes material (milling, lathing, drilling, etc.) - the
raw material for AM is either a fine powder of the material or a filament,
which is deployed layer by layer creating the designed structure.[1] There-
fore, the material synthesis and manufacturing of the final product happen
simultaneously. This is a big advantage of AM which brings a large de-
sign freedom and the possibilities to create geometrically highly complex
configurations.[1] E.g. it is possible to create integrated hollow spirals into
the wall of a tube or minimalistic foam like lattice structures.

There are different types of AM processes. The relevant one for this the-
sis is Selective Laser Melting (SLM). In this process, the part is built by the
successively melting of new layers of powder. The melting is done by one
or several laser beams. As for many 3D printing processes, the part is gen-
erated on a heated build platform, which is lowered by the pre-set layer
thickness for each layer. To distribute the powder homogeneously over the
build platform for each layer, it is distributed by a roller. All the leftover

Figure 1.1: Schematic SLM pro-
cess overview with the relevant
elements.[3]

unmelted powder remains on the
build platform until the end of the
manufacturing process and serves
as supporting material. Once the
manufacturing process is finished,
the powder is removed and the part
can be post-processed with various
heat treatments or surface refine-
ments. A schematic visualization
of an SLM printing machine can be
found on the right side in Figure
1.1.

Due to its nature of melting layer by
layer, the laser melts the top layer
and simultaneously remelts and re-
heats previous layers. This influ-
ences the metallic grain growth sig-
nificantly and leads to a typical
martensitic grain structure. In sec-
tion 2.3 there are two microscopic
pictures of the grain structure of additively manufactured Ti-6Al-4V in Fig-
ure 2.7. Furthermore, compared to conventional manufacturing methods,
the AM generated surface of a piece is best comparable to metal casting
with a characteristical rough surface. SLM-printable materials include steels,
ceramics, aluminium, titanium and many other metal alloys.
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1.3. Fatigue Analysis

1.3 Fatigue Analysis

Fatigue analysis incorporates methods to predict and explain the behaviour
of materials and structures under cyclic loading. According to J. Schijves
[17], the fatigue life of a specimen is governed by two main phases, first, the
Initiation Period, which is followed by the Crack Growth Period that ultimately
leads to the final failure of the piece.

The difference between these phases, and the knowledge whether the prob-
lem at hand is initiation or propagation dominated, are the essentials for
a good prediction of the performance. This is crucial since for each phase
there are distinct properties and conditions that affect fatigue life or fatigue
crack growth. With this distinction, the suitable relations can be applied.

For the initiation dominated cases, the common practice is to use the Stress
Concentration Factor Kt, while for the propagation dominated ones, fracture
mechanics and the Stress Intensity Factor K have to be considered for calcula-
tions.

1.3.1 Stress Concentration Factors

In the case of a crack initiation problem, the main focus lies upon the calcula-
tion of the Stress Concentration Factors Kt. The stress distribution is primarily
based on the theory of elasticity.[17] If the local stresses exceed the yield
limit, plastic deformation occurs and the more complex theory of plasticity
needs to be consulted.

However, for High Cycle Fatigue (HCF) the fatigue phenomena usually oc-
cur at such small stresses where no plasticity occurs and the stresses are
concentrated very locally around defects. Therefore, the geometrical shape of
a specimen and its notches are the defining properties. At the notches root,
the theoretical stress maxima σmax are located. These maxima are always
compared to a nominal stress σnom, which is often the value of the stress for
an unnotched sample or the stress over the cross-section at the root of the
notch. The ratio of σmax/σnom is then defined as the Stress Concentration Fac-
tor Kt for the particular notch. For a multitude of notches, the examined
Kt-factors can be obtained from lookup tables or charts.[14] In general, the
value of Kt rises the sharper a notch (the smaller the inner radius) is or the
deeper a notch intrudes a structure.

The following two Figures 1.2 and 1.3 show two examples of geometries with
well known notches out of the everyday use of engineers, the shoulder fillets
for a flat or a round bar. The mentioned tendencies are well visible. For the
theoretical 90◦-edge the value for Kt rises to infinity. Further explanations on
the topic of Stress Concentration Factors and their determination are discussed
in section 2.2.
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1. Introduction

Figure 1.2: ”Stress concentration factors Kt for a stepped flat tension bar
with shoulder fillets (based on data of Frocht 1935; Appl and Koerner 1969;
Wilson and White 1973).”[14]

Figure 1.3: ”Stress concentration factors Kt for a stepped tension bar with
circular cross-section and shoulder fillet.”[14]
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1.3. Fatigue Analysis

1.3.2 S/N-Plots

For a first approach to determine the fatigue performance of a material or a
structure one usually considers their S/N - Curves. Figure 1.4 shows such a
diagram for Ti-6Al-4V made with different production methods. Since the
experimental data has a significant scatter, the fatigue tests are repeatedly
carried out under the same conditions. Finally, a line is fitted through the
points such that the line represents a 90%-chance of survival. Figure 1.5
provides a schematic plot that describes the different lines one can read out
of an S/N - Plot.

Figure 1.4: ”Fatigue performance (S-N) curves for Ti-6Al-4V produced [...]
via HSPT and gaseous isostatic forging (GIF) with subsequent heat treat-
ment to produce bi-modal and globularized microstructures, as well as con-
ventional vacuum sintering with and without GIF.”[11]

Figure 1.5: Schematic S/N - plot. Translated to English from [16].
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1. Introduction

1.3.3 Cracks

The following section about cracks is mainly based on the explanations from
J. Schijves Book - Fatigue of Structures and Materials.[17]

The fatigue life of a specimen is defined by the number of repeated load cy-
cles it can withstand before it rips apart. Thus the final failure is a breakage
in the geometry. As mentioned before at the beginning of section 1.3 these
types of ruptures are initiated by cracks. Figure 1.6 displays the different
phases of the fatigue life and for each main period the dominating factor.

Figure 1.6: ”Different phases of the fatigue life and relevant factors.”[17]

There are two main possibilities of crack types: the ones where the fatigue
life ends within only a few additional cycles after crack initiation with a
close to inexistent propagation period and those for which the propagation
period is dominating the better part of the lifespan. The former are labelled
as Crack Initiation Problems and the latter as Crack Propagation Problems.

Crack Initiation

The initiation and the growth of cracks are a consequence of the phenomenon
called cyclic slip. This describes the plastic deformation of a specimen along
so-called slip planes. There is plastic deformation even though fatigue occurs
at stress amplitudes significantly below the yield limit of a material.

Looking through the material on a microscale, the shear stresses are never
homogeneously distributed and can locally reach large enough values to
produce plastic deformation. The favourable locations to slip are mainly on
the surface.[17] Figure 1.7 on the next page shows the basic mechanisms of
cyclic slip. Once initiated, for each consecutive cycle of loading, the stress in
the slip plane will increase. Cyclic slip leads to microcracks.

6



1.3. Fatigue Analysis

Figure 1.7: Mechanisms of Cyclic Slip [17]

Another reason for the slip to start on a geometry’s surface are the intro-
duced stress concentrations due to notches as in section 1.3.1 described. They
lead to maximal stresses on the surface and in the notch’s root. Therefore,
the conditions there are favourable to slip initiation. This leads to the follow-
ing two conclusions:

”In the crack initiation period, fatigue is a material surface
phenomenon.”[17]

and

”The initiation period is supposed to be completed when microcrack
growth is no longer depending on the material surface conditions.”[17]

After the initiation phase, the crack grows in size. Thus this is called the
crack growth period, where the microcrack changes into a macro scale phe-
nomenon.

Crack Growth

For the first phase of growth, the crack is still in one single grain of the
material’s microstructure. It contributes to an increased heterogeneity in the
stress distribution. This distribution has its concentration peak at the tip of
the crack. As soon as the crack grows into adjacent grains the slip changes
from single plane to multiplane slip. In general, it will now expand nor-
mal to the loading direction. Due to the cyclic mechanisms of slipping the
progression over grain boundaries causes a significant reduction in growth
speed.[17] Different grains are due to different orientation and anisotropy
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1. Introduction

differently affected by stresses, therefore, the crossing of grain boundaries
results in a lowering of the growth rate.

Figure 1.8 shows the typically observed behaviour of the crack growth rate
with the explained effects at the grain boundaries.

Figure 1.8: ”Grain boundary effect on crack growth [...].”[17]

Furthermore, Figure 1.8 shows that for a large enough crack size the growth
rate stabilizes and becomes a more or less continuous process. The cracks’
growth rate is now defined by the so-called crack growth resistance of the mate-
rial. Now the previously important surface factors roughness and favourable
conditions for slip do not affect the process anymore. For the crack growth
period, the following concludes:

”Crack growth resistance when the crack penetrates into the material
depends on the material as a bulk property. Crack growth is no longer a

surface phenomenon.” [17]

In Figure 1.9 a few interesting aspects are illustrated. According to [17] the
following facts hold:

1. Microcracks range down to less than 1µm for perfect surfaces but
cracks which initiate at inclusions generally are of similar size as their
starting inclusion. The only detectable sized cracks start from macro
defects.
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2. As shown by the two lower curves the crack is most of the time below
1mm in size and therefore practically invisible to the eye.

3. The two dashed lines are labelled as non-propagating cracks. In fact, not
all cracks grow until failure.

Figure 1.9: ”Different scenarios of fatigue crack growth.”[17]

Propagating and Non-Propagating Cracks

From both laboratory experiments and working environment observations,
it has been shown that some initiated cracks do not grow past a certain
size. Frost et al. [4] have found that for sharp notches with a large Kt, the
crack initiation can not be avoided. Even for low stresses, due to the high-
stress peaks, plastic deformation and crack nucleation occurs. However, it
was also shown that the low-stress amplitudes were too low for continuous
crack growth. Figure 1.10 on the next page displays these findings.

Furthermore, there is a possibility that a two-phased grain structure acts as
a barrier for small cracks. For example, the α/β interfaces in Ti-alloys such
as Ti-6Al-4V behave in such a manner. In general, the size of those non-
propagating cracks are of comparable order as these microstructural barriers
and therefore referred to as microstructurally small cracks.

Due to these non-propagating cracks, the fatigue limit can now be redefined
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1. Introduction

as the ”lowest stress amplitude for which crack nucleation is followed by
crack growth until failure.”[17]

Figure 1.10: ”Observations [..] on non-propagating cracks as a function of
Kt. Material: mild steel.”[17]
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Chapter 2

Methods

2.1 Experimental Setup

2.1.1 Fatigue Testing

Figure 2.1: CAD im-
age of a strut speci-
mens’ middle part.

For the fatigue testing the so-called strut specimen
were used. A strut is a micro testing specimen.
They consist of a cylindrical bar in the middle,
which is for a better usability connected to support
structures on both ends. With these support struc-
tures, the sample can be clamped into the testing
machine. For an increased stability of the sample,
two supporting beams are printed along the middle
part, which have to be removed (in our case cut) be-
fore starting the experiments. Figure 2.1 shows a
Computer-Aided Design (CAD) realisation of the
middle part of such a specimen.

Uniaxial fatigue tests were run with these strut
specimen. In particular, all tests were conducted
in tension to tension mode. This setup was chosen
since tensile loads are known to be more critical for
the fatigue performance compared to compressive
loads. Furthermore, the propagation of cracks can be slowed down by com-
pressive loads. This was observed with specimen which were examined un-
der fully-reversed loading regimes that had a longer fatigue life compared
to tension only tests. To further achieve a good comparability to the previ-
ous strut testing by the group and particularly D. Greenfeld [6], the same
stress ratio of R = 0.1 was applied. Moreover, the same machine in the same
force-controlled mode was used. All the tests were conducted with a loading
cycle frequency of f = 10Hz.

11



2. Methods

The two pictures in Figure 2.2 show in a) the testing setup on the planar
biaxial testing machine (MTS Systems Corporation, Eden Prairie, USA) and
in b) a close-up picture of the clamping mechanism used to mount the strut
specimen onto the machine.

For the tests, only one of the two axes, respectively two of the four hydraulic
axes, were used. In particular, the axis number one and three, with number
one used static and number three dynamically actuated. The load cell on
axis one was used to measure the loads on the specimen to not include any
inertia effects from the movement. The alignment of the two active axes is
crucial for samples as tiny as our struts. That is why for each test close
attention was paid on the orientation and the positioning of the specimen.

(a) Testing setup for struts on pla-
nar biaxial testing-machine.

(b) Close-up of the clamping mechanism
with a clamped strut specimen.

Figure 2.2: Testing setup for fatigue analysis of strut specimen.

All the tests were run in force-controlled mode, where the applied force
levels were calculated from target stresses with respect to the cross-section
of the nominal geometry Anom. The loading-magnitudes were deduced from
Daniel Greenfeld’s [6] test results, which are displayed in Figure 2.3.

Two different diameters for the nominal geometry were examined to inves-
tigate a possible size effect. The following Table 2.1 lists the different applied
stress levels during the experiments for both 200µm and 500µm nominal di-
ameter struts. There were a total of fifteen experiments carried out, eleven
for the 500µm and four for the 200µm specimen.
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2.1. Experimental Setup

Figure 2.3: ”S-N curve for AM Ti-6Al-4V struts.”[6]

Table 2.1: Experimentally tested stress levels for 200µm and 500µm nominal
diameter struts. Eleven tests with 500µm and four with 200µm were carried
out.

nom Diameter
in µm

Max Force
in N

σa
in MPa

σmax
in MPa

σmin
in MPa

500 78.54 180.00 400.00 40.00
95.99 220.00 488.89 48.89

200 12.57 180.00 400.00 40.00
21.00 300.80 668.45 66.85
26.00 372.42 827.61 82.76
25.00 358.10 795.77 79.58

2.1.2 Post Test Examinations

All the fracture surfaces of the tested strut samples were analysed with an
optical microscope. The generated pictures were then further edited with
the open-source image processing software ImageJ to calculate the value of
the fracture cross-section area.

To this end the different pictures from the microscope were imported to the
software and all consistently edited in the following order:

1. Import all the pictures from one sample as an Image Sequence. See
Figure 2.4 (a).
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2. Methods

2. Adjust the global scale to the scale on the microscope picture.

3. Convert the image to an 8-bit representation. See Figure 2.4 (b).

4. With the function Convert to Mask, the picture is transformed into an
only black or white representation according to the chosen method.
See Figure 2.4 (c).

5. Finally, the area is calculated with the function analyse Particles:

a) Set the minimal particle size to 0.08 (if the Scale was set in mm).

b) Toggle Show Outlines.

c) Check Display Results.

d) Confirm and run with OK.

With 5.a) an areal threshold for the smallest considered continuous details
is defined. The final result of an exemplary picture can be seen in Figure
2.4 (d). The choice of which method is applied in the Convert to Mask menu
mentioned above in point 4. was chosen visually to the best fit. This way, for
each microscopic picture, a value for the cross-section is calculated and an
average value can be determined for each strut sample.

In Table 2.2 the results for the area analysis with ImageJ are listed. The
extreme values, however, have to be treated with caution. Since the mea-
surement of the area highly depends on the pictures’ focus. Furthermore, it
is not recommended to try and draw any specific conclusions about the ac-
tual shape of the fracture area before testing from these pictures. The simple
two-dimensional consideration is in this case not sufficient.

Table 2.2: Generated values for the fracture locations’ cross-sections with
ImageJ and their over- respectively undersizing in percentage to the nominal
area. For comparison, the nominal value for the cross-section is 0.196mm2.

Test # Area in
mm2

Oversize
in %

Test # Area in
mm2

Oversize
in %

Test 1 0.134 -31.6 Test 7 0.173 -12.1
Test 2 0.175 -10.9 Test 8 0.136 -30.6
Test 3 0.179 -8.8 Test 9 0.181 -7.8
Test 4 0.174 -11.2 Test 10 0.173 -12.1
Test 5 0.151 -22.9 Test 11 0.169 -13.9

The four pictures on the next page in Figure 2.4 show an exemplary step-by-
step process from the microscope picture to a measurable outlined area.
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(a) Picture from the microscope (b) After conversion to 8bit

(c) After Convert to Mask (d) Final generated outline.

Figure 2.4: Exemplary step-by-step procedure for an image post-process with
the ImageJ software to analyse the real cross-section of a fatigue tested strut
specimen at fracture location.
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2.2 Theoretical Approach

As described in the Introduction chapter 1, stress concentrations are one of
the main influences on a specimens’ fatigue life during the initiation period.
Especially the ones introduced by notches are common in the everyday use
and work of engineers. Therefore they are thoroughly analysed and books
such as Peterson’s - Stress Concentration Factors [14] were put together full
with formulas and tables to specify the Kt values for a given type of notch
or for a given arrangement of notches.

2.2.1 2D Stress Concentration Factors

In the two-dimensional case considering plane stress or plane strain problems,
the solution is for most real cases analytically solvable. The differential
equations describing the system in equilibrium state are the three following
ones from [18]:

I
∂σx

∂x
+

∂τxy

∂y
+ p̄Vx = 0

II
∂τxy

∂x
+

∂σy

∂y
+ p̄Vy = 0

III
(

∂2

∂x2 +
∂2

∂y2

)
(σx + σy) = − f (ν)

(
∂ p̄Vx

∂x
+

∂ p̄Vy

∂y

) (2.1)

where p̄Vx and p̄Vy are the body forces per unit volume in the corresponding
direction and f is a function of Poisson’s Ratio ν:

f (ν) =
{

1 + ν for plain stress
1

1−ν for plain strain

Additonally the surface conditions are:

px = lσx + mτxy

py = lτxy + mσy
(2.2)

where px and py are the surface forces per unit area at the boundary in the
corresponding directions. l and m are the directional cosines of the normal
to the boundary.

For a constant body force distribution in Equation 2.1 III, the right-hand
side reduces to zero. Under these assumptions, the analytical Kt can be
calculated. Interestingly, with constant forces, the Equations 2.1 and 2.2
do not contain any material constants and therefore the values are only
depending on the geometrical shape and loading conditions.

This property enables the use of other ways to experimentally estimate the
stress concentration factor, e.g. with photoelasticity where a material is be-
ing used which differs from the actual structure of interest.[14]
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2.2. Theoretical Approach

2.2.2 3D Stress Concentration Factors

If the structure has to be considered as three dimensional, the calculation
of Kt is not as evident as for two dimensions in Equation 2.1. Most stress
concentrations are now also a function of the material constants. For many
cases, the Poisson’s Ratio is an important factor.

For the nominal strut structure of the tested specimen described in section
2.1.1, there is no exactly identical configuration to be found in [14]. The
closest two are the ones to which the graphs for the values of Kt are shown
in the Introduction chapter in Figures 1.2 and 1.3, where the structure is
either considered to be made from a thin plate with a constant thickness or
to be made from a round bar.

For the configuration at hand the formulas in the said figures leave the ques-
tion open, as to what should be considered as the unnotched width H re-
spectively diameter D. The three interesting configurations are the two ex-
trema for both width and diameter and a chosen in between middle position,
Max = 1.5mm, Middle = 0.5mm and Min = 0.275mm. The maximal value
corresponds to the outer thickness of the supporting structure in the strut
samples and the minimal value to the nominal strut diameter plus two times
half of the edge blend radius due to the 45◦ connection at that point. The
calculated Kt values for the three positions are listed in Table 2.3.

Table 2.3: Values of the minimal and maximal calculated Kt for the nominal
strut geometry under three different assumptions of D and H according to
Peterson.[14]

D & H Max Middle Min
in mm 1.5 0.5 0.275
max Kt 2.0 2.049 1.670
min Kt 1.421 1.8 1.352

The middle position was chosen such that the function describing the Kt-
value in the case of a stepped tension bar of circular cross-section with
shoulder fillet takes a maximum value. Therefore according to the theory,
we would expect a Kt somewhere in the range between 1.3 and 2.1. This was
used as an estimate to compare with the results from the simulations.
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2. Methods

2.3 Paris-Erdogan Law For Strut Samples

As mentioned in section 1.3.3 Cracks, there are different types of cracks. If
one plots the crack growth rate da/dN as a function of the stress intensity
range ∆K for a certain material on a log-log scale it takes the characteristic
form, as it is displayed in Figure 2.5 with its three main regions (I, I I and
I I I) and two vertical asymptotes. All values for ∆K outside and left of the
threshold region I are too low and therefore irrelevant for crack growth. For
all the values outside and right of the region I I I a direct complete failure is
to be expected.

Figure 2.5: ”Three regions of the crack growth rate as a function of ∆K.”[17]

For the description of propagating cracks in the I I region, the best-known
equation is the so-called Paris-Erdogan Law [12]:

da
dN

= C∆Km = C
(
Y∆σ
√

πa
)m

(2.3)
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2.3. Paris-Erdogan Law For Strut Samples

With da: the infinitesimal change in crack length; dN: the infinitesimal delta
in cycles and C, m: material parameters. The value for Y can be chosen equal
to 1, which leads to an integrated form of Equation 2.3 that is analytically
solvable for the number of cycles until failure N f :

N f =
∫ N f

0
dN =

∫ a f

a0

da
CYm∆mσ(πa)m/2 =

1
CYm(∆σ

√
π)m

∫ a f

a0

a−m/2da

=
1

C(∆σ
√

π)m
1

m/2− 1

(
1

am/2−1
0

− 1
am/2−1

f

) (2.4)

where a0 is the initial crack length and a f the final one. For most classical
materials the parameters C and m are listed in the book Bruchmechanischer
Festigkeitsnachweis für Maschinenbauteile: FKM Richtlinien.[2] But for the case
in this thesis with Ti-6Al-4V, there were no values to be found. In the dis-
sertation of P. Huffman [7] the following plot, shown in Figure 2.6, can be
found. They display the da/dN as a function of ∆K in log-log.

Figure 2.6: ”Fatigue crack growth rate curves for Ti-6Al-4V at low-stress
ratios[...].”[7]

Deduced from the plot the values for C and m for a stress ratio of R = 0.1
are the following:
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Table 2.4: Values C and m for Ti-6Al-4V from Huffman [7].

C m
1.97 × 10−10 2.7

For the initial crack length a0, the microstructure of the material has to be in-
spected. From the analysis with a Back Scattered Electron Diffraction (BSED)
microscope pictures of the surface of specimen were generated, shown in
Figure 2.7. The microstructure of AM Ti-6Al-4V is similar to the martensitic
structure known from steels.

Figure 2.7: Microscopic pictures of struts with indicated lengths of the grain
lentils diameters. All lengths with a scaling factor of 1.36 to large.

In the picture above all measured lengths are oversized by a factor of 1.36
due to picture scaling (50µm ⇔ 68). The measuring was done with Siemens
NX 11. Since the martensitic lentils are a three-dimensional phenomenon
the measured lengths have to be assumed as underestimating the maximal
diameter. For the calculation of the initial crack length a0, the average of the
largest ten values was taken. This leads to an a0 with the size of 0.0536mm. If
one compares this value to the calculated value from the Kitagawa Diagram
in Figure 2.8 where a0 = 0.037mm it shows that this is larger than the
minimal crack length.

Therefore we are in the field of elastoplastic fracture mechanics, where
Paris’s Law is technically not applicable. With this knowledge of discrepancy
in mind here are the calculated values:
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N f (∆σ) =
1
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Figure 2.8: Calculated Kitagawa Diagram for AM Ti-6Al-4V with values from
Greenfeld [6] and the formulas for the curves from the FKM Richtlinien [2].

With this formula, one can approximate an S/N-Curve shown in Figure 2.9,
where for comparison the experimental results of D. Greenfeld [6] and the
values for machined Ti-6Al-4V from Li et al [8] are displayed as well. From
the graph, we see that for lower values of ∆S (∆S = 2 ∗ σa), the calculated
prediction of the Paris Erdogan Law is diverging from the measured values.
The reasons for that are amongst other things the following:

• The problem is crack initiation dominated and therefore the more rele-
vant portion of the fatigue life is until the crack reaches the critical
crack length. In Equation 2.4 the integration starts from an initial crack
length which is equal to a0. Thus it completely disregards the initiation
timespan.

• The Paris’ Law is not applicable according to the calculation of the Kita-
gawa Diagram as introduced in the FKM Richtlinien.[2] According to

21



2. Methods

them, the problem lies in the regime of elastoplastic fracture mechan-
ics.

• The used parameters from [7] are derived for machined traditional
Ti-6Al-4V and might be inaccurate for our material.

• It is never possible to predict the fatigue limit with the Paris Erdogan
Law.

Overall the results are as it was expected and within the known limitations
to the applicability of the law.
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Figure 2.9: Calculated S/N Curve from the Paris Erdogan Law 2.3. For com-
parison, the measured data form Greenfield [6] for AM struts and the data
for traditionally manufactured Ti-6Al-4V from Li et al [8].
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2.4 FEA Approaches on Nominal Strut Structure

Figure 2.10: 3D geom-
etry in Abaqus for the
nominal strut FEA.

The idea was to calculate the value of Kt for the
nominal structure of our strut specimen. The un-
derlying geometry to the following FEAs is shown
on the right in Figure 2.10. An edge blend with a
radius of R = 0.075mm connects between the cylin-
drical strut and the 90-degree angled flat section.
For the nominal geometry, the maximum stresses
are expected in the root of this mentioned edge
blend. With the Simulia Abaqus CAE software, the
part was meshed and the load case was introduced.
The lower rectangular face (respectively to the pos-
itive z-direction) was set to be fixed with the cor-
responding boundary condition (BC) and on the
upper one, the load was applied with a negative
valued uniform pressure.

Since the whole simulation is evaluated only lin-
early, the calculated value for Kt is independent
of the magnitude of the stress used. This simpli-
fication is valid since the fatigue limit is for most
materials at around 0.2 ∗ Rp0.2 and for these stress
levels, the assumption of linear behaviour according to Hooke’s law is a good
enough approximation.

2.4.1 FEA Setup on Nominal Structure

For the previous experiments on the strut samples, the fatigue limit was
determined at an amplitude σa of roughly 165 MPa for a stress ratio R = 0.1
(tension to tension). To get from the amplitude to the maximal and minimal
stresses σmax and σmin respectively, one uses the following relations:

0.1 = R =
σmin

σmax
=

σm − σa

σm + σa
⇒ σa =

1
2
(σmax − σmin) =

1− R
2
∗ σmax

⇒

σmax = σa ∗
(

2
1− R

)
= 165MPa ∗

(
2

0.9

)
≈ 366.7MPa

σmin = σa ∗
(

2 ∗ R
1− R

)
≈ 36.67MPa.

where σm is the average stress for the loading cycle. To derive the pressure
on the upper surface of the geometry that leads to the wanted σnom in the cir-
cular section, the aimed for value was divided by the area ratio RArea of the
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cross-sections (top surface to the middle cross-section of nominal geometry):

RArea =
Atop

Amiddle
=

1.5mm ∗ 0.2mm
(0.1mm)2 ∗ π

= 9.5493.

In our case, the stress level aimed for at the nominal cross-section, was the
experiments maximal stress at the fatigue limit σmax = 366.7MPa. From this
the equivalent load σtop was deduced to:

σtop =
σmax

RArea
=

366.7MPa
9.5493

= 38.401MPa.

In Abaqus, the simulation with the above-derived stress was then repeated
for different mesh sizes. For each refinement the mesh was set up according
to the following 5 steps:

1. Seed the part to the minimum wanted mesh size.

2. With seed edges apply the rough outer mesh on the cubical outmost
parts with mesh size 0.1mm.

3. For the 45◦ angled connecting edges from the cubical to the cylindrical
region set a one directorial (single) bias from 0.1mm to the minimum
wanted mesh size.

4. Define the number of knots on the edges before the edge blend as fixed
to the minimum mesh size and the amount as unchangeable.

5. Generate the mesh.

The mesh refinement aims to quantify the Kt value for its mesh dependency
and to investigate a convergence in simulation results.

2.4.2 One Per Cent Approach

From the article [9] we got the idea to use what we called the one per cent
approach for the Kt approximation. Instead of taking the obvious choice for
the maximal stress value and simply taking the maximal calculated value
from the simulation, the suggestion is to take an average stress value for
the top 1% of generated values. The argument behind this approach is that
finite element methods tend to result in unrealistic singularities within the
stress field due to distorted mesh elements. This leads to overshoots in the
calculated simulation results.

After assessing the method and giving it some deeper thought it was con-
cluded to not follow down this path any further because of the following
unwanted properties of the method:

• Let us consider a given notched geometry, for which the correct value
for Kt is known, such as a semicircular groove in a cylinder. From the
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chart 2.19 out of Peterson’s Stress Concentration Factors [14], we get a
specific value in the range of 1.7 to 3.1 depending on the ratio between
the radius r of the grove and the diameter D of the cylinder r/D and
no other influences.
But for the method at hand, our value for Kt mostly depends on the
size of the cylinder around the groove. The more material is repre-
sented in the simulation, the further away from the notch spreads the
range of considered elements for the 1% highest values. Thus lowering
the average value through obvious reasons. This behaviour leads to a
complete dependency on meshing and on the design of the simulated
structure with less importance for the notch itself. Furthermore, the
comparability of different geometries with different meshes is impos-
sible.

• The argument that FEA simulations have singularities at which the
stress values overshoot largely is valid. These problems tend to occur
at locations where one either expects them (e.g. sharp edges) or at
locations where one knows that no such stresses will occur (e.g. edges
and boundaries with connections to the simulations’ BCs).
These problems are possible to be averted by introducing edge blends
(that normally also represent the real case more exactly, since the per-
fect edge from manufacturing does not exist) or simply to disregard of
such single nodes, where overshoots occur.

2.4.3 Maximal Absolute Principal and Maximal Mises Stresses

Intuitively one would compare the simulations’ maximal value to the cal-
culated nominal value, which was done in choosing the Maximal Principal
Stress and the Maximal Mises Stress to derive two values for Kt. The differ-
ence between the two lies of obviously in their calculation.

The Maximal Principal Stress is obtained by calculating the stress tensor’s
eigenvalues and taking the one with the largest absolute value. This leads
to the maximal occurring stress in the whole body.

The Maximal Mises Stress however, is calculated by the well known formulas:

σv,M =√
1
2
(
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2

12 + σ2
23 + σ2

13)
)
=√

1
2
((σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2)

(2.5)

where the symmetric stress Tensor σ is equal to σ = (σi,j)
3
i,j=1 and {σi}3

i=1
represent the three principal stresses. This reduces the maximal value by the
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amount of hydrostatic pressure. It is a commonly used measure for ductile
materials.

With the two values for maximal stress, two Kt values are generated due
to comparison to the same nominal stress. This gives a certain bandwidth
where the real value can be expected, for a more conservative approach the
larger of the two should be chosen.

2.4.4 FEA Approach on Size Effect for Nominal Struts

The size effect of the nominal geometry was FE analysed for different strut
diameters. In particular the diameters d = 200µm, 300µm and 500µm
were simulated. To all geometries, the same edge blend was introduced
with a radius of R = 0.075mm as described in the first part of chapter 2.
The loads to the geometries were calculated in the same way as in section
2.4.1 such that for all sizes σnom was equal to 366.7MPa. In that way, all the
Kt calculations were with the same σnom. If the same theory as described in
section 2.2.2 is applied to all three diameters, then Table 2.3 can be expanded
to the following more comprehensive one:

Table 2.5: Table with the minimal and maximal calculated values Kt for the
nominal strut geometry according to Peterson [14] for the three different
strut diameters 200µm, 300µm and 500µm.

200µm 300µm 500µm
D & H Max Mid Min Max Mid Min Max Mid Min
in mm 1.50 0.30 0.075 1.50 0.80 0.375 1.50 0.80 0.575
max Kt 2 2.05 1.67 2.1 2.1 1.63 2.4 2.16 1.61
min Kt 1.42 1.8 1.35 1.58 1.83 1.42 1.8 2 1.51

It showed that for the bigger diameters, the stress concentration should in-
crease. This was as expected since the edge blend radius stays the same
while the diameter increases, which is a comparable effect to reducing the
radius for a constant diameter. For the value of Kt, the relation between
diameter and radius is relevant. Thus the larger the diameter, the more the
constant edge blend size acts like a sharp edge and less like a continuous
blend and therefore Kt rises.

The three nominal geometries were all simulated with different mesh sizes
analogue to the described case of the 200µm as explained in section 2.4.1.
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2.5 FEA Approach on The Real Structure

After the FEA of the nominal strut geometry, the next task was to analyse
the real AM structure. Thanks to the previous work of S. Robmann [15]
there were already as STL-files exported micro Computer Tomography (µ-
CT) scans of struts available. An example is shown in Figure 2.11.

Figure 2.11: µ-CT scan converted to STL-file of an AM Ti-6Al-4V strut with
200µm nominal diameter (strut S1 4 1).

2.5.1 Steps from STL to Abaqus

A few post scanning modifications had to be done to the scan created STL-
files. The biggest change was to construct additional material onto the top
and bottom of each strut to apply BC’s and loads. Working with STL-files
is tricky since the files are neither simple to work with nor are they easily
transformed into other better usable formats. This is due to the minimized
amount of information stored in the files themselves caused by the triangu-
lated representation.

The finally chosen approach to adjust the files and import them into Abaqus
was the following:

1. Import STL-file into Siemens NX 12 as a convergent body.

2. Move the created body into the part origin.

3. Sketch additional geometry in the x-y plane and extrude symmetrically
the top and bottom parts.
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4. Mesh generation in NX:

a) Start a new FEM and Simulation with the Pre/Post application.

b) Create no idealized Part, use high for the Polygon Body Resolution
and choose Abaqus as Solver in Solver Environment.

c) Mesh the geometry to the desired mesh.

d) Activate Simulation.

e) Export to Abaqus under File → Export → Simulation, select to
output only Nodes and Elements under Output Options choose file-
name and export directory and generate the inp - file.

5. Import part to Abaqus from the created file under File → Import →
Part.

At this point, it has to be highlighted that this was the only process, which
turned out to be fruitful for some of the µ-CT scanned STL-files. I could not
find a process that enabled me to generate the desired fine meshes for all the
samples. On the contrary, even this method only worked for a few scans.

2.5.2 FEA Setup for Real Struts

Upon including the Siemens NX mesh into Abaqus the FEA can be set up the
same way as for any other geometry of course without the need to generate
a mesh. For the simulations’ setup the following settings were chosen:

• Material AM Ti-6Al-4V as elastic and isotropic with Young’s Modulus of
100GPa and a Poisson’s Ratio of 0.25.
The value for the Young’s Modulus is not as critical to be 100% accurate
since the load is introduced as force and not displacement and we only
care for the quantitative results in stress but not strain.

• A Reference Point above the top surface was introduced.

• The top surface mesh nodes were connected by a kinematic coupling
constraint where all degrees of freedom were included. Like this, the
whole surface displaces by the same vector as the reference point does.

• The load was calculated such that the force would generate a σnom
equal to the σmax = 366.7MPa from the experimental fatigue limit
which results in a force of:

σnom =
F

Anom
= 366.7MPa⇒ F = σnom ∗ Anom = 11.5202N

which was applied in the vertical direction at the Reference Point.

• Two BC’s were included:
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– The lower mesh surface to be fixed in all degrees of freedom.

– The reference point to be fixed in all degrees of freedom but the
direction of the force.

For faster solving of the FEA, the added geometries are meshed coarse with
the Mesh Control functions in Siemens NX. An example of a meshed real strut
is shown below in Figure 2.12. As explained in the last point above its BC’s
are highlighted with blue and orange wireframe cones visualizing the fixed
constraints for rotation and displacement.

Figure 2.12: Abaqus FEA setup for real strut geometry with visualized BC’s
and load on Reference Point (strut S1 4 1 with 0.0125mm mesh size).
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Chapter 3

Results and Discussion

3.1 Experimental Results

3.1.1 Expected Results

The expectations before starting the experiments were that there should be
a size effect and that it should be the 500µm diameter struts, which are
more resistant to fatigue stresses. The initial idea was that the governing
characteristic to the determination of the fatigue life was to be found in the
geometry mismatch from the AM process. Since this is an absolute value
(the accuracy of the printer), the smaller the sample the larger the relative
error and vice versa. The fabrication details for the tested strut samples are
the following:

”An AM250 system, a laser power of 200 Watt, and Ti-6Al-4V powder were
used. The powder was plasma-atomized to obtain a particle size of 14−
45µm. The layer thickness of the powder bed was 30µm. All specimens were
annealed at 850◦C ± 10◦C for 2 hours. No surface treatment and no hot
isostatic pressing (HIP) treatment were performed.”[5]

Meaning that for our strut samples the worst case in smallest particle size
was roughly 22.5% of the nominal diameter for the case of 200µm struts
and 9% for the 500µm ones. From these numbers and from optically visual
geometry faults on the printed samples the above described assumption
arose. To have the maximal possible size effect in the experiments and due
to time limitations, only the thinnest the 200µm and the thickest the 500µm
printed struts were tested.

31



3. Results and Discussion

3.1.2 Fatigue Testing Results

Cross-Section and Stress Calculation

All the experimental tests were run in force-controlled mode, meaning that
the stress levels have to be calculated under the assumption of a certain
cross-section. Within this decision - how to specify the cross-section - lies
the challenge. For best usability from a design point of view for a first ap-
proach, the nominal geometry was chosen. The aim was to have results,
which would give factors that could directly be used together with the di-
mensions in CAD and thus would be simplest to implement. Therefore the
first approach was to calculate the stress levels using the theoretical geom-
etry. Which leads to 0.196mm2 for the 500µm and 0.031mm2 for the 200µm
struts.

The results from the fatigue tests, however, showed an interesting distri-
bution. Mainly the smaller struts performed unlikely well, e.g. a runout
occurred at σa = 372.42MPa with σmax equal to 827.6MPa and σmin respec-
tively to 82.76MPa, which would be an extraordinary fatigue performance
if one considers the yield strength of roughly 900− 1000MPa according to
[13]. The plot below in Figure 3.1 shows the generated data with the stress
values calculated according to the cross-section of the nominal geometry.

140

190

240

290

340

390

440

490

1.E+03 1.E+04 1.E+05 1.E+06

St
re

ss
 A

m
p

lit
u

d
e 

in
 M

Pa
 

Number of Cycles N (log)

Fatigue Behaviour of AM Ti6Al4V Struts, R=0.1, d_nom 200 and 500µm 

500µm 200µm Daniel Greenfeld

Figure 3.1: The experimental results of the fatigue tests considering the nom-
inal geometry for the stress values. Results from [6] are converted to the
same calculation from the given testing forces used for his testing.

The data in Figure 3.1 suggests clearly that the 500µm struts perform inferior
to higher stresses than the smaller 200µm ones. This was not as expected
and further investigations into the actual cross-section of the specimens were
conducted.
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A second and different approach to calculate the considered nominal cross-
section was made. In previous work by D. Ghedalia [5] amongst other things,
an oversizing factor for the different strut diameters was found. Table 3.1
lists the values for vertically printed strut samples and the in Table 3.2 the
area for the nominal vs. the corrected cross-sections are specified. These
values come from analysing the struts’ dimensions. Which were measured
from optical microscope images. Therefore this is a two-dimensional ap-
proach, for which the transformation into the three dimensional oversizing
is under the assumption of circular cross-sections. For the final oversizing
factor an average over several measurements was taken. The real geometry,
however, must not be as simple as S. Robmann showed in his work.[15] His
example of a horizontally printed strut (on page 29) shows that the deforma-
tion due to oversizing and miss printing is possible to be a largely varying
phenomenon along the struts middle part. Therefore taking the average is
risky and not in all situations appropriate.

In our case, however, where only vertically printed specimens were looked
at, considering the average diameter is a valid approach. This is due to the
least-waviness and smallest geometry mismatch in vertically printed specimens
compared to other printing directions. A clear tendency for the waviness fac-
tor is that it decreases the closer to vertical the printing direction is, e.g. for
500µm struts it is at 7.99% for a horizontal printing direction and decreases
monotone to the minimal value of 4.28% with vertical direction.[5]

Table 3.1: Oversizing factors for vertically printed strut samples from
Daniele Ghedalia.[5]

nominal diameter 200µm 300µm 400µm 500µm
oversizing in diameter 1.53 1.36 1.17 1.14

oversizing in area 2.34 1.84 1.36 1.3

Table 3.2: Nominal cross-sections vs. corrected cross-section with oversizing
factors from [5].

in mm2 200µm 300µm 400µm 500µm
nominal cross-section 0.0314 0.0707 0.1257 0.1963

oversized cross-section 0.0735 0.1301 0.1709 0.2553

With these area-corrections, the experimental results take a new shape and
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arrange more the way it was expected. This can be seen in Figure 3.2. It
shows that if the AM oversizing is taken into account, the two types of
struts arrange such that the original expectations look more likely. Due to
the bigger size of the struts, the absolute printing error becomes relatively
smaller than for the thinner ones. The difference is visible.

An even further refinement in the calculation of the real cross-section was
the post-testing analysis of the final fracture area of each strut with an optical
microscope and calculation of its area. The step-by-step process was further
described in section 2.1.2. It is clear that also for this method some limita-
tions in terms of accuracy exist. But the approach to look at the fracture
location’s cross-section is a more reasonable approach than simply taking
a rather arbitrary average over different measured cross-sections, since the
geometry mismatch is a very specimen specific effect.
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Figure 3.2: The experimental results of the fatigue tests considering the over-
sizing as described in [5]. Results from [6] are converted to the same calcu-
lation from the given testing forces used for their testing.

The approach to look at the fracture location is interesting and valid as this
is the area where the maximal stresses occurred during testing. It is the
location where the optimal conditions for crack initiation and growth lay.
Meaning a maximum of superposed properties like a small cross-section to
increase the overall stresses on the section or the presence of a strong notch
(with a large Kt) that induces a high stress concentration. Another big influ-
ence can be the presence of structural printing defects such as air bubbles
trapped in the material. For these reasons, the fracture area is always an
interesting surface to analyse and measure for a reference area to calculate
the nominal stresses.
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One of the problems with analysing the fracture surface is that the final
rupture is always coupled with plastic deformation and necking due to the
very small remaining cross-section that induces high stress values. Thus
the final fracture area is normally plastically deformed and if measured the
area is smaller than before testing. With the knowledge of these limitations,
the argument for this method is that the measurements are still closer to
the relevant cross-section for our struts compared to the already discussed
average. Due to the considerable waviness of the middle part in the strut
samples, the cross-sections taken for the average tend to oversize the wanted
area.

If only the 500µm struts are considered and the stress levels according to the
different calculation methods are plotted, the results are as shown in Figure
3.3. Interestingly the analysis of the fracture area shows no oversizing but
rather an undersizing of the local cross-section. For the 200µm only two
samples were tested and the cross-section analysed. For these two samples,
the analysis showed a clear oversizing slightly below the values of [5].
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Figure 3.3: Fatigue test results for 500µm struts with the three different area
calculation methods, nominal area, oversizing factor according to [5] and
analysis with microscope and ImageJ of the fracture surface.

For a final comparison of the two specimen sizes’ fatigue performance in
Figure 3.4, the data is plotted in log/log. This time the stresses are calculated
with the measured fracture areas for the 500µm diameter struts. From this
plot, a size effect can be deduced. If the relevant cross-section for the real
stress is measured the 200µm no longer outperform the 500µm but rather
succumb to the printing limitations of SLM AM. For each size, a power
trendline is drawn for each one the equation is shown.
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To conclude, as it was expected there is a size effect which makes the thinner
specimen prone to fail earlier than the bigger ones. This effect, however, is
only visible if the real cross-sections are analysed. The oversizing problem
with the 200µm struts completely dominates all other effects. It produces
the largest influence on the behaviour of the struts such that the target of a
globally valid Kt factor could not be reached for a range of different nominal
cross-sections. The problem at hand has too many manufacturing process-
specific parameters that influence it.

Figure 3.4: Fatigue test results for 200µm and 500µm with data from [6]. The
power trendlines for both sizes are excluding the runouts. For the 500µm
specimens, the stresses were calculated using a light microscope and the
software ImageJ to measure the fracture surface as reference area and for
the 200µm the oversizing factor from [5] was used to modify the nominal
diameter.

36



3.1. Experimental Results

Fracture Locations

In the previous experiments by the group, the observation was made that
the specimens mostly fail at the connection between the middle part and
the bigger supporting structure. Also for the new additional tests, this was
an overwhelming trend. All the struts broke at either one of the two ends,
where the cylindrical part changes into the angled flat supporting structure.
In Figure 3.5 a histogram with the distribution of the fracture location is
shown:
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Figure 3.5: Fatigue test fracture locations of the strut specimens. All the
struts broke at either one of the two ends, where the cylindrical part changes
into the angled flat supportingstructure.

It is not completely clear what causes this phenomenon. Two approaches to
explain are as follows:

1. The alignment as shown in Figure 2.2 (b) in the machine is never per-
fect to the last decimal. It has to be set optically and was done to the
best of my capabilities. But there remains an uncertainty how close
to the theoretical perfect alignment the machine was. To quantify the
effects a short back-of-the-envelope calculation was made. It showed
that the effect of induced stresses due to misalignment showed is not
negligible at all. For the 500µm struts, it resulted in a difference of
roughly 15% and for the 200µm with the consideration of oversizing
roughly 22%.

2. The nominal geometry of the strut induces with its shape a stress con-
centration at the exact location where the probes fail.
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3. Results and Discussion

Of course, both effects are very likely to be superposed.

Regarding point 1: If there were a slight misalignment, then there was
additional unwanted induced bending on the specimen, which influences
the testing conditions largest at the ends of the middle part, where the
clamping mechanism fixes the two sides. E.g. a short conservative back-
of-the-envelope calculation for an assumed misalignment of 0.05mm, the
additional imposed stress would be roughly 70-80 MPa for the oversized
200µm nominal strut. This results if the middle section is simplified as a one
side clamped cylindrical beam. For the hand calculations and an additional
FEA see Appendix A.

Regarding point 2: For a further analysis of this effect, the effort to analyse
the structure with FEA was made. Its results are discussed in section 3.2.

Another interesting fact was that for nine out of thirteen test specimens there
were well visible air inclusions in the fracture surface, which also function
as considerable notches (spherical cavity in an infinite body → Kt = 2.05 from
[14]). Figure 3.6 below shows a few of the fracture surfaces with clearly
visible inclusions.

(a) Test 7 (b) Test 8 (c) Test 1

(d) Test 2 (e) Test 14 (f) Test 12.2

Figure 3.6: Six examples from six different strut samples for fracture surfaces
with at least one inclusion present.

It is evident that the printing mechanisms are still prone to produce un-
wanted porosity in materials. These inclusions might be reduced with post-
printing treatment like HIP.
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3.2. Finite Element Analysis Results

3.2 Finite Element Analysis Results

For the analysis with FEA, the struts were simulated with different ap-
proaches as explained in chapter 2. First, the nominal geometry from CAD
as it was sent to the printing company was calculated to see the notch effect
of the original nominal design itself. As a second step, samples for which a
µ-CT scan was available, were examined as well. Since the 200 µm struts are
the weaker ones in terms of fatigue performance and out of time limitations,
only those were used for the real strut FEAs.

3.2.1 Results for the Nominal Structure

Mesh Convergence Study and 200µm Notch Analysis

Figure 3.7: Stress distribution from FEA
of nominal strut geomerty with 200µm di-
ameter.

The first step for the nominal ge-
ometry was to run simulations
for a mesh convergence analy-
sis. At the same time, the in-
duced nominal notch was anal-
ysed. The results are shown
on the right with a picture of
the Mises equivalent stress dis-
tribution over the whole sample
in Figure 3.7 and in Figures 3.8
and 3.9 with charts of the simu-
lation results. It was shown that
for a mesh size below 0.0125mm
the results stopped to change be-
low a threshold of 0.115% for
the Mises equivalent stress and
0.273% for the maximal princi-
pal stress values, which was con-
cluded to be a satisfying conver-
gence.

In comparison to the calculated
theoretical Kt values, which lay
in the interval of [1.352, 2.049]
(see section 2.2.2 on page 17),
the simulated values are realis-
tic placing themselves at 1.497
for the Mises and 1.572 for the
maximal principal stresses calculated with the finest mesh.
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Analysis for Size Effect of Nominal Geometry

As a next step, for the size effect analysis of the nominal geometry, addi-
tional simulations for 500 and 300µm struts were run. There as well the
results were as expected according to the theory. The thicker the strut, the
higher the Kt values. Figure 3.10 shows the three different diameters and
their averaged Kt values with the indications of deviation between the upper
and lower value of maximal principal and Mises equivalent stress concentra-
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3.2. Finite Element Analysis Results

tion factor. All these values were as expected from the theoretical approach
(see section 2.4.4 on page 26). In Figure 3.11 the simulated Mises equivalent
stress distribution for the two geometries with larger diameters are shown.
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Figure 3.10: FEA results for size effect analysis of nominal strut geometry
notch. Simulated for 200µm, 300µm and 500µm diameter. Values for Kt
averaged between Mises equivalent and maximal principal stress. Upper
and lower bounds at each point indicated with bars.

(a) 300µm (b) 500µm

Figure 3.11: FEA results of the two additionally simulated thicknesses for
the size effect analysis on the nominal structure.
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3.2.2 Results for the Real Structure

Figure 3.12: Stress distribution from
FEA of µ-CT scan strut geometry.

The next step was to analyse the real
printed and µ-CT scanned three di-
mensional geometry. This turned
out to be not as straight forward
as it was expected. The handling
of scanned geometry, which can
only be exported in STL file format,
makes working with it rather dif-
ficult. Additionally, the generated
and refined geometry is never as
good to work with as a traditionally
designed structure from CAD. The
meshing of the struts poses a very
difficult task to realize. This is due
to the unconventional shapes and
the minuscule mesh sizes required
to adequately represent the geome-
try.

Different software solutions to real-
ize and mesh the geometry were
iterated for the best solution, but
sadly I could not find a definitive
winner. Due to a matter of time,
only two of the scanned struts could
be simulated in a more or less satisfactory manner. The setup for the simu-
lations of these struts is described with more detail in section 2.5.

Figure 3.13: Close up of stress
distribution around maximum
location. The colour legend is
equal to figure 3.12.

The results which were achieved are dis-
played in the following two charts in Fig-
ures 3.14 and 3.15. Above in Figure 3.12
and on the right in Figure 3.13 the result-
ing stress distribution for one of the sim-
ulations are shown overall and in a close-
up. In the latter, one the specific character-
istics of AM samples is clearly visible, i.e.
to have high stress concentrations in very
small vicinities of the peak value. This is
due to the printing induced notches and
edges. Same as for the nominal struts a
mesh sensitivity analysis was made for one
strut (S 1 9 1). Subsequently, for another
specimen the simulations for the determination of the Kt values were run.
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3.2. Finite Element Analysis Results

But as it is visible in Figure 3.15 for the second geometry, the mesh was not
yet at a convergent level and further refinement would have been necessary.
Due to the mentioned meshing problems and limitations in computational
resources, these additional simulations could not be made.
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Figure 3.15: Mesh convergence analysis and Kt calculation with the rever-
ence stress calculated for nominal diameter.

Even for a mesh size of 0.003125mm, which equals to 1.6% of the nominal
diameter, it could not be said with certainty that a satisfying convergence
was reached. Possible approaches to get feasible simulations for this prob-
lem would include to locally refine the mesh around the critical notch, but
there are two significant problems to this approach. On the one hand, that

43



3. Results and Discussion

it is never completely clear where exactly to refine the mesh beforehand.
It occurred that the location of maximal stress changed its location after
a new simulation with refined mesh was run. So running a coarse mesh
simulation must not be sufficient to get the critical location correctly. On
the other hand, for the local refinement, I do not know a working method.
All the mesh refinement tools that are available in Abaqus or Siemens NX
12 are not made for refinement on these types of geometries. Also within
the 3-Matics software, there is to my knowledge no such function to select
only local geometries and refine them separately from the global mesh. Sub
modelling approaches might be a solution, but for this approach getting the
boundaries right, might be tricky.

Another question is whether it is reasonable to try and mesh the scanned
geometry as close as possible. The transversion from the µ-CT pictures
into the 3D geometry introduces geometry errors as well. This leads to the
question, whether the refinement to smallest details down to the single µm
is reasonable, while the scan itself is limited by finite resolution.
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Chapter 4

Summary and Outlook

The objective of this thesis was to analyse the fatigue properties of SLM
printed Ti-6Al-4V structures. In particular, the aim was to find a size effect
between different thicknesses in AM single strut diameters and to further
assess struts with FEA for the determination of a Kt factor for AM effects.

From the experiments, microscopic analysis and the FEA have led to the
following findings:

• It is crucial to compare stress values calculated on real cross-sections
between different strut sizes. Since oversizing is a big issue for geome-
tries of this scale.

• Under consideration of real stress values, the larger specimens perform
superior to the smaller ones.

• For the struts with the design of the nominal structure, a substantial
notch is introduced at the connecting edges to the interesting middle
part, which leads to local stress concentrations. This notch makes a
proper analysis of the strut structure in between difficult.

• The approximative calculation of the influence of misalignment in the
testing setup showed that there might be a significant discrepancy be-
tween the actually tested stress levels and the ones that should have
been tested. This problem needs to be further investigated to quantify
its effect on the testing results.

• The FEA of the real shape µ-CT scanned struts posed a bigger prob-
lem than expected. The small size of the specimens and their even
finer detailed geometry brought large problems to the meshing of the
geometry. Therefore only a limited analysis of the struts was realised.

For the future research projects, it could be interesting to search further for
optimized processes to generate suitable meshes and get simulations results
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4. Summary and Outlook

with a feasible amount of computational power. Upon solving this task, the
focus could be back on seeing whether the FEA’s predicted maximal stress
location coincides with the fracture location.

To further analyse the strut specimens, it could be interesting to additionally
analyse samples, which were treated with post-printing treatments. Possibly
printing oversized and using chemical etching to the aimed for diameters or
to use HIP or even a combination of both. This could lead to interesting
results since it reduces the waviness of the structure and its induced notches
with the etching process and with the HIP the internal cavities might be
reduced.

To analyse the actual effects of AM on the fatigue performance of cylindrical
struts the influence of the nominal geometry and the testing setup would
have to be minimized. Interesting approaches for the nominal geometry
might be to implement a fillet between the support structure and the strut
middle part as they are described in [14] on pages 140-142. To reduce the
notch effect to a nonsignificant level. For the testing setup problem, a self-
aligning setup could be a possible solution (realized with the usage of two
spherical joints maybe).

Another interesting topic could be to find out what influences the limits
of an AM SLM printer in terms of geometric dimensions. In correlation
to the size of the lasers’ smelting pool, the printing powder grain size and
layer thickness. As for other more conventional manufacturing methods
these machine and tool-specific limitations have to be taken into account.
It might show to be reasonable to invest more time into the consideration
of the printing limitations and to optimize accordingly while designing an
AM structure. This way the overall geometry defects and mismatches could
possibly be minimized.
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Appendix A

Calculation of Induced Stresses from
Misalignment

A.1 Simplified Hand Calculation

The assumptions for the hand calculation of the induced stresses due to a
misalignment are the following:

• The strut is considered as a circular linear elastic beam.

• The diameter is constant as it is in the nominal geometry.

• The misalignment, one side of the clamping mechanism to the other, is
fixed at 0.03mm, roughly the size of a thin hair. This leads to an angle
between the dynamic axis and the center axis of the strut.

• Only the effect of the induced part of the force normal to the centerline
is considered in the calculations

• It is assumed that the beam is clamped on one side and free on the
other.

• A uniaxial stress state is assumed (only in x-direction).

All the assumed parameters for the calculation are listed in the following
table:
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A. Calculation of Induced Stresses from Misalignment

Table A.1: Parameters for the stress calculation induced through misalign-
ment for the 200µm and 500µm struts.

Young’s Modulus E 100GPa
Radius R 0.1mm and 0.25mm
Length l 1mm
Unclamped Distance d 6mm
Misalignment ∆w 0.05mm
Experimental Force Fexp -26N and -96N
Area Moment of Inertia Iy = Iz

πR4

4

F
l

f

x
w(x)

Figure A.1: Simplified assumption for mis-
alignment stress calculation.

With basic geometry, the an-
gles of a right triangle are
calculated from its catheti
with the tangent function.
The length over which the
misalignment takes place is
6mm as is was set to for each
experiment. Therefore the
angle of misalignment γ is:

γ = arctan
∆w
d
≈ 0.477◦

Therefore the testing force
can be split up into a paral-
lel and a normal component
relative to the specimens centerline. Only the normal component is being
analysed here:

F = sin γ ∗ Fexp ≈ 0.008 ∗ Fexp

From basic mechanics lectures, the formulas for a linear elastic beam, as it is
shown in Figure A.1, are known. With the previously calculated forces the
induced bending torque at the clamped side can be calculated:

Mb(x = 0) = −l ∗ F = −l ∗ sin γ ∗ Fexp

With the value for the induced bending torque, one can calculate the induced
stresses at the fixed position. They distribute linearly over the cross-section
in y− z− plane with zero stress in the middle and the maximum value on
top and the minimum on the bottom:
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A.1. Simplified Hand Calculation

σx(y) = −
Mz

Iz
y =

l ∗ sin γ ∗ Fexp

Iz
y ⇒ σx,max =

4 ∗ R ∗ l ∗ sin γ ∗ Fexp

R4 ∗ π

⇒

σx, max, 200µm = 275.8MPa

σx, max, 500µm = 65.17MPa

Considering the oversizing according to [5] for the 200µm struts this reduces
to:

σx, max, 200µm = 77.0MPa

This state has to be superposed with the stress from to the parallel force and
then one gets an estimate for the stress-changes they are listed in Table A.2.

Table A.2: Maximal nominal stress values if induced bending is considered.
For the 200µm struts additionally, the oversized nominal diameter was con-
sidered. Because of the extremely high values for the unchanged area.

no bending
in MPa

with bending
in MPa

additional
stress in %

500µm 488.89 554.08 13.33
200µm 827.61 1103.44 33.33

oversized 200µm 353.54 430.56 21.78

Following up on the next page, the FEA for the misalignment is described.
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A. Calculation of Induced Stresses from Misalignment

A.2 FE Simulation

A single FE Simulation was made, where the force was split up in parallel
and normal parts, according to the misalignment angle from the hand calcu-
lation before in A.1. The results as shown in Figure A.2 are higher than the
approximative hand calculation. But the nominal geometry is additionally
to the bending influenced by its notch as discussed in section 3.2.1. This
affects the situation further. Nevertheless, the distribution shows a clear
asymmetrical stress allocation with significant stress concentrations.

Figure A.2: FE simulation of misalignment in testing setup.
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