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agreement with the supervisor in order to adapt to this situation.
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Abstract

Lattice structures are used in a variety of applications, for example as vibration
absorbers in aerospace or in the medical field as part of implants. Analyzing such
structures with finite elements comes with great computational cost as calcula-
tions with a huge number of degrees of freedom are necessary. Different homog-
enization approaches for a variety of lattice types have been developed in the
past. However, most of these techniques are based on elastic models developed
for specific load cases. In this project, the body-centered cubic lattice geometry
is used. For this lattice, initially orthotropic material models are developed for
uniaxial and shear loading conditions. The limitations of this approach are identi-
fied and discussed in this study. Furthermore, a novel modeling technique using a
surrogate model trained for general load cases is presented. This model describes
the mechanical behavior of the body-centered cubic lattice cell associated to a
representative cube element. Preliminary results show that such a model can ad-
equately describe the stress-strain relationship of structures made of lattice units.
In the future, this model could be implemented into a finite element package as a
custom material or element.
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1
Introduction

The concept of cellular structures can be seen in a variety of natural materials
such as wood, bones or sponges. The high strength-to-weight ratio makes such
structures ideal for various applications, for example as core in lightweight sand-
wich panels as Wadley [16] describes it in his study. In this project however, the
focus is specifically on lattice structures. These structures are composed of peri-
odic arrangements of single cells, which are formed by different configurations of
struts.
Lattices have many potential applications in various fields of technology. For

example, they are used in additively manufactured biomedical implants. In the
work of Alabort et al. [1] it is shown that micro-scale lattice structures can be
designed to match the mechanical properties of bone tissue. With this approach
the issue of stress shielding can be prevented. Another field where these types of
structures have a big potential is aerospace. For example, in the paper of Matlack
et al. [11] a lattice able to absorb low-frequency vibrations is presented.
Due to the complexity of lattice structures a very fine mesh is needed to repre-

sent the geometry in a finite element analysis (FEA). For instance, for a strut diam-
eter of 200µm the required mesh size to get accurate results is around 20–50µm.
For bigger lattice structures, composed of hundreds of cells, a huge number of
degrees of freedom is necessary. Thus, calculations on such large lattices are com-
putationally very expensive. Consequently, fully resolved FEA of such structures
are not feasible for the designer. This has lead to various macroscopic descriptions
of lattices.

1.1 Literature Review

In this project, the analysis is focused on a specific cell geometry: The body-
centered cubic (BCC) lattice cell (see Figure 1.1). It is used here because of its
geometric simplicity and also because it seems to be predominantly discussed in
the literature. For example, Xu et al. [17] analyzed the Young’s modulus of the

1



1 Introduction

Figure 1.1: Spatial distribution of Young’s modulus of the BCC cell (Xu et al. [17]).

BCC lattice cell. They found that the modulus is dependent on the direction in
space. A visualization of the modulus distributed in space is shown in Figure 1.1.
There it can be seen that the stiffness of the structure is symmetric. It can also be
observed that the highest stiffness of the structure is in the diagonal direction par-
allel to the struts. For the BCC geometry, different homogenization methods are
presented by various researchers. The aim of such a homogenization is to replace
the lattice cell with a solid cube element that shows the same behavior as the lat-
tice. Using this concept, the complexity of analysis can be reduced to lower-degree
calculations since the lattice cell is no longer treated as a structure but rather as a
material.
In the literature, many authors try to generate homogenization models with

material laws similar to isotropic elastic materials. Analytical formulations are de-
veloped to correlate geometric parameters of the structure to its material moduli.
For instance, Ptochos and Labeas [13] developed a model in which the Young’s
modulus E and the Poisson’s ratio ν are made dependent on the width of the cell l
and the radius of the struts r. These correlations are defined in the following way:

E∗

Es
=

4
p

3
l2

πr2 +
l4

2πr4

(1.1)

and

ν=
− 1
πr2 +

l2

4πr4

1
πr2 +

l2

2πr4

. (1.2)

Another approach is shown in the work of Ushijima et al. [15]. They analyt-
ically developed an equation for the Young’s modulus dependent on the lattice
dimensions under certain assumptions and boundary conditions. They validated
their model using 1D beam and 3D solid elements in a FEA. Furthermore, they
compared experimental data from compression tests to their calculations. For a
certain ratio of strut radius to the width of the cell they achieved accurate results
with their model.
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1.2 Objective of This Project

Luxner et al. [6] were facing the issue from another direction by modeling the
structure with Timoshenko beam elements. The quadratic beam elements allow
for bending and shear deformation. Not taken into consideration were the over-
lapping volume at the nodes. To overcome this, the nodes were modeled with a
sphere with a radius equal to the diameter of the struts.
Then, there is the correlation according to Gibson and Ashby [4]. This equation

describes the dependency of the Young’s modulus of a general lattice cell geometry
to its density ratio. In the review article of Maconachie et al. [7] the Ashby-Gibson
model is presented in more detail. There, it is formulated as follows:

E∗

ES
= C1

�

ρ∗

ρS

�n

, (1.3)

where E∗ and ρ∗ are the Young’s modulus and the density of the lattice cell. ES
and ρS are the analogous quantities for the core material, respectively. C1 is an
experimentally derived constant. The exponent n is dependent on whether the lat-
tice is stretch-dominated or bending-dominated. One can determine this behavior
with the Maxwell equation. It can be formulated as follows for 3D structures:

M = s− 3n+ 6, (1.4)

where s is the amount of struts and n the amount of nodes. In the case of bending-
dominated structures M < 0 while for stretch-dominated structures M ≥ 0. For
the BCC, where s = 8 and n = 9, Equation (1.4) yields M = −13. Therefore, the
BCC behaves in bending-dominated manner. In such a case the exponent n equals
2 and Equation (1.3) becomes:

E∗

Es
= C1

�

ρ∗

ρs

�2

. (1.5)

The experimental data summarized in the study of Maconachie et al. [7] seems
to approximately corroborate this correlation with this exponent.
There are also multiple numerical approaches in the literature to get to the

elastic moduli. For example, Alwattar and Mian [2] used simple load cases to
parameterize an orthotropic material model for a BCC lattice. They also used a
neural network to find a model explaining the elastic moduli depending on the
geometrical dimensions. Another example of using a numerical approach is the
work of Omairey et al. [12]. For this study the authors even developed an Abaqus
toolbox to homogenize general periodic cellular structures.

1.2 Objective of This Project

The aim of this project is to develop a novel modeling solution for lattice struc-
tures, here specifically the BCC geometry. Based on the mechanical behavior of
one single lattice unit cell, the behavior of a bigger lattice is to be predicted. The
first approach is the development of an orthotropic material model using simple
boundary conditions, as it can be seen similarly in the literature. Then, the goal is
to develop a material model using a surrogate model trained on general, randomly
sampled boundary condition data. An implementation into Abaqus is discussed to
validate the results of this approach for bigger clusters of lattice structures.
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2
Methods

In this chapter, firstly, the lattice geometry with its mesh parameters and its mate-
rial is presented (Section 2.1). Secondly, a simple approach to generate a model
using a selected set of boundary conditions is discussed (Section 2.2). Lastly, the
methods used to generate a surrogate model using randomly sampled boundary
conditions to obtain a description of the lattice cell’s mechanics for general load
cases is presented (Section 2.3).

2.1 Geometry, Mesh and Materials

In this project, a lattice cell geometry as depicted in Figure 2.1 is used. It is a
BCC lattice cell with a width of 1mm and a strut diameter of 0.15mm. More
parameters and measures about the geometry are depicted in Table 2.1.

Figure 2.1: The BCC lattice cell geometry used for the simulations.

The simulations explained in the next sections are carried out using Abaqus. For
this, the lattice geometry described above is meshed with quadratic tetrahedron
elements with a seed size of 0.05mm yielding 5 896 elements (see Figure 2.2).
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2 Methods

Parameter Variable Value Unit

Cell width W 1 mm

Strut diameter D 0.15 mm

Lattice volume v 0.105 9 mm3

Young’s modulus bulk material ES 200 000 MPa

Poisson’s ratio bulk material νS 0.3 –

Density bulk material ρS 0.007 85 gmm−3

Cell volume V 1 mm3

Cell mass m 0.000 831 g

Density lattice ρ∗ 0.000 831 gmm−3

Table 2.1: The parameters of the BCC lattice used in this project.

All the lattice cell simulations carried out in this project use the same meshing
parameters. Additionally, a steel material is assigned with a Young’s modulus of
200 000MPa and a Poisson’s ratio of 0.3.

Figure 2.2: The lattice cell meshed with 5 896 quadratic tetrahedron elements.

2.2 Simple Boundary Condition Modeling

An approach to homogenize the lattice cell is the use of a selected set of non-
random boundary conditions. In this project, the boundary conditions are applied
according to the way Alwattar and Mian [2] describe it in their paper. The first
boundary condition setup is the normal displacement load case (Figure 2.3a), in
which four surfaces of one side are displaced in z-direction. On the opposite side
of the cell, the surfaces are fixed in z-direction. Lateral contraction is allowed for
the surfaces. The second boundary condition setup (Figure 2.3b) is the shear dis-
placement load case. In this configuration, four surfaces on one side are displaced
in x-direction, the surfaces on the opposite side are fixed in all three directions.
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2.2 Simple Boundary Condition Modeling

The resulting deformation of the lattice for these two load cases is visualized in
Figure 2.4.

u3 = 0.001

u3 = 0

u1 = u2 = u3 = 0

(a) Normal displacement boundary conditions.

u2 = 0.001

u1 = u2 = u3 = 0

(b) Shear displacement boundary conditions.

Figure 2.3: The two different boundary condition configurations.

(a) Directional deformation under the normal
displacement boundary conditions.

(b) Directional deformation under the shear dis-
placement boundary conditions.

Figure 2.4: The deformation for the two different boundary condition configurations.

Using these boundary conditions, the parameters for a material model are cal-
culated. The material is defined to be orthotropic but because of the symmetry of
the BCC cell, the material is here called “quasi-isotropic”. By this term it is meant
that it behaves like an elastic isotropic material. However, the shear modulus is de-
fined to be independent of the Young’s modulus and the Poisson’s ratio. The model
therefore has three independent parameters instead of only two. In mathematical
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2 Methods

terms, the material law can be expressed as follows:
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. (2.1)

The Young’s modulus E is defined as

E =
σ33

ε33
, (2.2)

the Poisson’s ratio ν as
ν= −

ε11

ε33
, (2.3)

and the shear modulus G as
G =

σ12

2ε12
. (2.4)

Bymeasuring the corresponding reaction forces and lateral displacements in Abaqus,
the three parameters defined in the Equations (2.2–2.4) can be calculated. It is to
note that due to the symmetry of the material definitions and the BCC cell itself,
other directions of stress and strain might also be used to define the parameters.
Furthermore, for reasons of comparison, an additional model is developed using

Ansys’ Material Designer (see also Ansys [3]). This is a toolbox which allows to
homogenize custom materials in Ansys. For the BCC cell it generates a quasi-
isotropic material as well.

2.3 Random Boundary Condition Modeling

In this section, the idea to generate a surrogate model able to describe the me-
chanical behavior of the BCC lattice cell under general deformations is discussed.
The modeling procedure is illustrated in Figure 2.5. The approach consists of three
simulations all carried out in Abaqus:

• lattice cell,

• cube element 1 and

• cube element 2.

2.3.1 Lattice Cell

The first simulation is the lattice cell calculation. At the corner nodes of the lattice
cell, eight reference points are defined. The three surfaces connected with each
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2.3 Random Boundary Condition Modeling
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11, σi
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23

Output:
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σε

Figure 2.5: Modeling approach with the full-integration representative cube elements.

corner node are coupled with these reference points. At the reference points, dis-
placement boundary conditions are applied with random sampling of the displace-
ment in all three directions of space. This is depicted in Figure 2.6. Additionally,
the rotational displacements of the reference points are set to be free. After the
calculation in Abaqus is done, the reaction forces at the same reference points are
read out. These forces are denoted as outputs of the simulation.

Figure 2.6: The displacement boundary conditions in all three directions assigned to the
eight reference points at the corners of the cell. The rotational displacement
is set to be free.

2.3.2 Cube Element 1

The next simulation carried out in Abaqus is the representative cube element 1
(see Figure 2.5). The geometry of this simulation is a cube with a width of 1mm.
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It is meshed with one linear full-integration element. The material assigned to the
cube is the same as for the lattice simulation. For the calculation, the displacement
values generated in the lattice cell simulation are used as inputs and applied to
the corner nodes of the cube. After the simulation, the strain values at the ele-
ment’s integration points are read out. In this case, six strain components exist for
each integration point yielding a total of a 48-dimensional output. An example of
a deformed lattice and a deformed cube element where the same displacement
boundary conditions are applied can be seen in the Figures 2.7a and 2.7b.

2.3.3 Cube Element 2

The last simulation to be discussed in Figure 2.5 is the cube element 2. The ge-
ometry, mesh and material of the simulation is the same as in the cube element 1.
The boundary conditions are now different however. Here, the reaction forces ob-
tained in the lattice cell simulation are applied to the corner nodes as concentrated
forces. As outputs of the calculation, the stress values at the element’s integration
points are read out. A lattice cell’s reaction forces and its application to a cube
element as concentrated forces at the corners is shown in Figures 2.7c and 2.7d.

2.3.4 Surrogate Model

The three simulations described before are executed for a set of random displace-
ment boundary conditions applied in the lattice cell.1 A MATLAB code produces
Abaqus input files with the sampling data for the three different simulations for a
defined number of sampling points. These input files are then executed using the
Abaqus command line tools. Various Python scripts read out the output data from
the Abaqus result files. The outputs of these simulations are the strain and stress
values at the cube element’s integration points. The idea is to model the relation-
ship between the strain and stress data using data-driven “black box” modeling.
This modeling is carried out in MATLAB with the help of the uncertainty calcula-
tion and metamodeling framework UQLab (see Marelli and Sudret [9]).
Eventually, the model should define the constitutive behavior of the lattice cell

for the representative cube element. By applying the boundary conditions ran-
domly, the idea is to have a reduced model able to describe a multitude of dif-
ferent complex load cases. For big lattice structures, the single lattice cells with
their detailed geometries can then be replaced by simple cube elements with a
constitutive behavior described by the surrogate model. Instead of running a full
finite element calculation, only an evaluation of the surrogate model is necessary
for each representative cube. Theoretically, it should be possible to implement the
model as a custom material law or a custom element in Abaqus. However, as it is
discussed later in Section 4.2.1, there seem to exist difficulties to implement such
a model.

1 The generation of such sets of random points in the “displacement hyperspace” (a space of 48
dimensions for the full-integration element) is shown in Section 2.3.6.
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2.3 Random Boundary Condition Modeling

(a) Displacement in the lattice cell. (b) Displacement in the cube element 1.

(c) Reaction forces in the lattice cell. (d) Concentrated forces in the cube element 2.

Figure 2.7: Depicted here are all the three simulation types for the random boundary
condition modeling approach. It can be seen how the displacement from the
lattice cell (2.7a) is applied to the cube element 1 (2.7b). Additionally, it is
visible how the reaction forces of the lattice cell (2.7c) are transferred to the
cube element 2 as concentrated forces (2.7d).

2.3.5 Reduced-Integration Modeling

A variant of the above describedmodeling approach is the use of reduced-integration
elements for the cube 1 and cube 2 simulations instead of the fully-integrated el-
ements. This modified procedure is illustrated in Figure 2.8. This new approach
yields only six strain and stress values as in- and outputs for the surrogate model.
The number of dimensions is therefore greatly reduced. As this modeling formula-
tion has only one integration point per element, a possible implementation into a
custom material in Abaqus (with FORTRAN and UMAT) is made more convenient
than with the eight integration points of the full-integration elements.

2.3.6 Mathematical Tools for Surrogate Modeling

In the following, the different mathematical tools for sampling, fitting and error
calculation of surrogate models used in this study are presented. Additionally,
their implementation in MATLAB is shortly described.
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Figure 2.8: Modeling approach with the reduced-integration representative cube ele-
ments.

Multivariate Linear Regression (MLR)

The MLR model is implemented in MATLAB using the mvregress function. Ac-
cording to the MATLAB documentation (MathWorks [10]), this model is defined
as follows:

y i = X iβ + e i , i = 1, . . . , n, (2.5)

where y i is a d-dimensional vector of responses, X i is a design matrix of predictor
variables, β is a matrix of regression coefficients and e i is a d-dimensional vector
of error terms with multivariate normal distribution. In this study, X i is directly
filled with the strain values, it is therefore a vector. y i consists of the stress values
at all the integration points. n describes the number of sampled points.

Elastic Material Laws

The following types of elastic material models are tested as simple surrogate mod-
els:

• isotropic (with two degrees of freedoms),

• orthotropic (with nine degrees of freedoms) and

• anisotropic (with 36 degrees of freedoms).

In this study, the parameters for these three models are found using MATLAB’s
function fminunc. fminunc is a nonlinear programming solver for unconstrained
multivariable functions. Here the objective function to be minimized is defined as
sum of the squared residuals.

Kriging

Kriging is a metamodeling method originally developed for the interpolation of
spatially-related data in geostatistics. The algorithm assumes a model output to
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2.3 Random Boundary Condition Modeling

be a realization of a Gaussian process. A Kriging metamodel provides the pre-
diction MK(x) of a new point x , given the observed input and the correspond-
ing response data: X =

�

x (1), . . . , x (N)	 and Y =
�

M
�

x (1)�, . . . ,M
�

x (N)�	. For
noise-free responses, the Kriging algorithm performs an interpolation. The UQLab
framework allows also for regression of noisy data. A detailed documentation of
Kriging is found in the manual of UQLab’s Kriging module (Lataniotis et al. [5]).

Polynomial Chaos Expansion

Polynomial chaos expansion (PCE) is a surrogate modeling technique to function-
ally approximate a computational model through its spectral representation using
basis polynomials. These polynomials are chosen in accordance to the input dis-
tribution of the computational model. In this project the input distributions are
statistically inferred from the data with the help of UQLab’s inference module (see
Torre et al. [14]). More details about PCE can be found in the PCE module manual
(Marelli and Sudret [8]).

Random Sampling

Different methods can be used to generate near-random samples of parameter
values from multidimensional distributions. In this work, mainly the Latin Hyper-
cube Sampling (LHS) and also the Halton sampling methods are used. For the
implementation in MATLAB, the functions lhsdesign and haltonset are used,
respectively. Examples of the two sampling methods are shown in Figure 2.9.

0 0.2 0.4 0.6 0.8 1
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x
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(a) 10 sampling points.

0 0.2 0.4 0.6 0.8 1

x
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0.2
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0.6

0.8

1

x
2

Halton

LHS

(b) 100 sampling points.

Figure 2.9: Comparison of the LHS and Halton sampling methods using a different num-
ber of points.

Error Measures

The following a posteriori error estimates are used in order to predict the gener-
alization ability of the trained model.

Training Error. For the Kriging and PCE modeling approaches, the leave-one-out
(LOO) cross-validation (CV) error is calculated. Lataniotis et al. [5] formulate the
LOO CV error in case of Kriging as in Equation 2.6. A similar definition can be
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derived for PCE.

εLOO =
1
N





∑N
i=1

�

M(x i)−µŶ ,(−i)(x i)
�2

Var[Y]



, (2.6)

where µŶ ,(−i)(x i) denotes the Kriging model gained from using all the points of
the initial experimental design X , except x i . Y = M(X ) is the computational
model’s response to the initial input X .

Validation Error. According to Lataniotis et al. [5] the validation error is calcu-
lated as a relative generalization error on an independent data set

Dval =
��

x (i)
val, y(i)

val

�

, i = 1, . . . , Nval
	

(2.7)

as follows:

εval =
Nval − 1

Nval





∑Nval
i=1

�

M
�

x (i)
val

�

−MMeta�x (i)
val

��2

∑Nval
i=1

�

M
�

x (i)
val

�

− µ̂Yval

�2



, (2.8)

where MMeta(x) denotes the metamodel’s and M(x) the computational model’s
response to x . µ̂Yval =

1
Nval

∑Nval
i=1 M

�

x (i)
val

�

is the sample mean of the validation set
responses. With this error measure, the performance of different surrogate models
tested on the same validation data set can be compared.

2.3.7 Code Verification

In order to verify the whole code framework described in Section 2.3.4 using
Abaqus for simulation, its Python API to read out the data and MATLAB to gen-
erate, process and model the data, a simple test is carried out. In this test, the
lattice cell geometry is replaced by a simple cube with an elastic orthotropic ma-
terial assigned (see Table 2.2). The geometry is meshed with one single linear
full-integration element. As boundary conditions the random sampling scheme is
used as described before. A number of 25 sampling points are generated as train-
ing data and 10 as validation data. The type of surrogate model used to fit to the
training data is the orthotropic model described in Section 2.3.6.

D1111 D1122 D2222 D1133 D2233 D3333 D1212 D1313 D2323

200 000 150 000 180 000 220000 190 000 170 000 160 000 250000 140 000

Table 2.2: Parameters for the elastic orthotropic material according to the nomenclature
used in Abaqus.

Results

As it can be seen in Figure 2.10, the validation errors for the orthotropic model on
the 10 validation points (calculated as defined in Section 2.3.6) are in the order
of 10−12. Thus, the model fits the validation data perfectly. The code integrity is
therefore ensured.
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Figure 2.10: Validation error for all six output dimensions (all six stress values) of the
orthotropic model used for the code verification.
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3
Results

The following chapter shows the results of the developed models. Firstly, the data
fitting results are shown for the surrogate models trained on the randomly sam-
pled data. In this context, the training and validation error values from the full-
integration model with eight integration points and the reduced-integration model
are presented. Secondly, the implementations into Abaqus of the models devel-
oped on simple boundary conditions and the reduced-integration model for ran-
dom boundary conditions are explained. The results of these implementations are
presented and the different model performances are compared with each other.

3.1 Training and Validation Errors of the Random Boundary
Condition Models

The performances of the surrogate models in predicting data are presented here.
Two types of errors are shown respectively: The training LOO CV error accord-
ing to Equation (2.6) and the validation error according to Equation (2.8). The
training error is calculated for Kriging and PCE on a modified training data set ac-
cording to the LOO CV procedure. The validation error is calculated on a new data
set. This error measures the generalization ability of the model. The error values
are calculated on the outputs of the models, i.e. the stress values. Therefore, the
multidimensional error values are depicted with column charts.

3.1.1 Full-Integration Model

The full-integration model results are depicted for two model types here. Fig-
ure 3.1 shows the training and the validation errors of a Kriging model. Figure
3.2 presents the validation results of a MLR model.1 The modeling errors are

1 For the MLR model, no training error is calculated. This is due to its implementation in the code.

17



3 Results

48-dimensional as the modeling has eight integration points each with six stress
values. Both the training and validation error values of these two models are in
the magnitude of 10−12. The two model structures are thus able to describe the
strain-stress relationship very accurately. The differences in the errors between
the Kriging and the MLR Method are so small that the more complex Kriging ap-
proach with many more parameters seems to be too cumbersome in comparison.
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Figure 3.1: Training LOO CV and validation error for the Kriging model.
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Figure 3.2: Validation error for the MLR model.

3.1.2 Reduced-Integration Model

The reduced-integration model results are displayed for three model types here.
Figure 3.3 shows the Kriging training and validation errors, Figure 3.4 presents
the errors of a PCE model and Figure 3.5 depicts the errors of an orthotropic
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3.1 Training and Validation Errors of the Random Boundary Condition Models

model2. As the reduced-integration element has only one integration point, the
errors displayed here have only six dimensions. It can be seen that the errors of the
threemodeling types all follow a similar pattern: The first three dimensional errors
are relatively small whereas the last three error components are relatively big (in
the range of 15–60%). The first three components denote the normal stresses and
the last three the shear stresses. These big errors in the shear components cannot
be diminished even if big data sets are used for the training (here, a training
data set of 200 points is used). It can therefore be concluded that the modeling
procedures with the reduced-integration elements are not capable to capture the
underlying mechanics of the lattice cell in a satisfactory manner.
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Figure 3.3: Training LOO CV and validation error for the Kriging model.
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Figure 3.4: Training LOO CV and validation error for the PCE model.

2 An orthotropic model formulation is used here instead of the MLR formulation because it is ob-
served that using the MLR formulation usually yields approximately an orthotropic material ma-
trix.
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Figure 3.5: Validation error for the orthotropic model.

3.2 Model Implementation and Verification

In this section the implementation of different models into Abaqus is explained.
Furthermore, the results of the implemented models tested on lattice clusters sub-
jected to certain boundary conditions are presented and compared.

3.2.1 Implementation into Abaqus

In order to ensure that the models developed under certain boundary conditions
describe the “real”3 mechanics of the larger cluster of lattices accurately, the mod-
els have to be implemented into Abaqus. Themodels implemented are the reduced-
integration, orthotropic surrogate model (termed “random”, see Figure 3.5), the
model trained according to the boundary conditions in Section 2.2 (“non-random”)
and the Ansys Material Designer model (“Ansys”) also mentioned in Section 2.2.
The employment into Abaqus of these three models is straightforwardly done us-
ing the predefined Abaqus orthotropic material option. Unfortunately, the full-
integration model cannot yet be implemented as it is further discussed in Section
4.2.1.
The three different models are tested against finite element simulations of the

full lattice structures. For that, the material models are applied to clusters of cubic
reduced-integration elements. The following selection of clusters is used: 2x2x2,
4x4x4 and 7x7x7. For comparison, finely meshed⁴ finite element simulations of
the lattice structures clustered in the same manner are carried out.
The setup for the boundary conditions of the clusters can be seen in Figure

3.6. On two opposite sides of the lattice and cube clusters all the free surfaces
are coupled to a reference point (RP) by a kinematic (rigid-body) coupling. The
displacement of RP1 is fixed in all three spacial and rotational directions. On the
opposite side, RP2 is displaced in a chosen direction, to either generate normal or

3 Modeled here with a highly resolved FEA.
⁴ The meshing parameters are analogous to the ones described in Section 2.1 for the single lattice
cell.
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3.2 Model Implementation and Verification

shear deformation of the structure. The reaction forces at the RP are then extracted
from Abaqus and used for comparison. For a precisely working homogenization
of the lattice the reaction forces should be the same for both models. The error
values are calculated according to the following equation:

Absolute Error=
�

�

�

�

RFLattice −RFCube
RFLattice

�

�

�

�

, (3.1)

where RF denotes the reaction forces. In Figures 3.7 and 3.8 the displacement
is visualized for a 7x7x7 cluster in the case of normal and shear displacement,
respectively.

(a) 7x7x7 lattice cluster with the coupling con-
straints.

(b) 7x7x7 cube cluster with the coupling con-
straints (mesh not visible).

Figure 3.6: Setup for verification of reaction forces.

(a) 7x7x7 lattice cluster. (b) 7x7x7 cube cluster.

Figure 3.7: Comparison of a lattice and cube cluster under normal deformation.

3.2.2 Results

Here the results of the three different models (“random”, “non-random” and “An-
sys”) are compared for the three different cluster sizes and the two different dis-
placement boundary conditions.
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3 Results

(a) 7x7x7 lattice cluster. (b) 7x7x7 cube cluster.

Figure 3.8: Comparison of a lattice and cube cluster under shear deformation.

The results for models with normal displacement can be seen in Figure 3.9. The
error values of the random model are 18.2% for the 2x2x2 cluster, 43.6% for
the 4x4x4 cluster and 56.3% for the 7x7x7 cluster. It can be seen that the errors
increase with increasing size of the structure. In contrary, the error values for
the non-random model decrease with increasing size, being 22.8% for the 2x2x2
structure 12.2% for the 4x4x4 structure and 9.1% for the 7x7x7 structure. The
Ansys model has the lowest error values with 0.3% for the 2x2x2 structure, 7.8%
for the 4x4x4 structure and 8.5% for the 7x7x7 structure.
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Figure 3.9: The modeling errors of three different models with normal displacement
boundary conditions.

The results for the shear displacement are shown in Figure 3.10. The random
model has errors of 5.0% for the 2x2x2 structure, 26.5% for the 4x4x4 struc-
ture and 39.5% for the 7x7x7 structure. The non-random model shows the same
decreasing error values with increasing lattice size with errors of 68.4% for the
2x2x2 structure, 21.5% for the 4x4x4 structure and 5.5% for the 7x7x7 structure.
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3.2 Model Implementation and Verification

For these two models the trends with increasing cluster size are similar to ones for
the normal deformation configuration. Lastly, the Ansys material model has again
a low error for all cluster sizes with errors of 3.8% for the 2x2x2 structure, 12.2%
for the 4x4x4 structure and 10.6% for the 7x7x7 structure.
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Figure 3.10: The modeling errors of three different models with shear displacement
boundary conditions.
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4
Discussion

In the following chapter, a discussion of the results is presented. It begins with the
models calculated for the simple boundary conditions and then proceeds with the
models trained on the random boundary conditions.

4.1 Simple Boundary Condition Modeling

For simple specific load cases, a homogeneous deformation exists in the lattice cells
(see Figure 2.4). Therefore, this allows the use of simple quasi-isotropic models for
homogenization. However, the results using these models show that this modeling
approach has its limits. What could be the reasons for the high implementation
errors especially for the “non-random” model1 trained according to the boundary
conditions defined in Section 2.2? One issue seems to be that the material pa-
rameters are determined with simple load cases. The application of these simple
quasi-isotropic models to large lattices assumes that the load cases can be approx-
imated by a superposition of the simple training load cases. However, the condi-
tions in the big lattice structures are (locally) more complex. Additionally, there
are boundary condition related effects, e.g. the effect of the kinematic coupling of
the lattice in the normal displacement case. Last but not least, the training bound-
ary conditions itself have a big impact on the parameters gained. For instance, in
the normal load case, if the cell was trained without allowing lateral movement,
the cell would behave stiffer as the struts would undergo less bending but more
stretching.

1 The Ansys model performs better in the tested lattices, especially for the small number of cells.
However, there are still errors up to 12.2% with this model.
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4 Discussion

4.2 Random Boundary Condition Modeling

For random sampling of the displacement boundary conditions, it is clear that the
lattice can be under a heterogeneous deformation. This observation is confirmed
in Figure 2.7 where a lattice structure under random boundary conditions is de-
picted. As presented in Section 3.1.2, the reduced-integration surrogate model
with the six strain inputs cannot adequately predict the strain-stress relationship
under this heterogeneous deformation. The effect of implementing this deficient
surrogate model in the representative cubes is clearly visible in the Figures 3.9 and
3.10, where it is shown that the errors of the reduced randomly sampled model
are relatively high (up to 56.3%).
On the other hand, the full-integration model using the information from all

eight integration points can perfectly explain the relationship of the data. This
seems to suggest that we need a higher order element model, i.e. not a reduced
element but at least a fully integrated linear element to capture the mechanics
properly.

4.2.1 Implementation of the Full-Integration Model into Abaqus

The implementation of the quasi-isotropic material law and also of the reduced-
integration surrogate models is straightforward in Abaqus. The quasi-isotropic,
isotropic, orthotropic and anisotropicmaterial laws are already available in Abaqus
by default. In the hypothetical case in which a multivariate linear model using six
strain inputs should be employed, a relatively accessible implementation would
also be possible. This could be achieved by using the FORTRAN subroutine func-
tionality of Abaqus. In this project this was not necessary as the matrices obtained
with a MLR model formulation typically motivated the utilization of anisotropic
or orthotropic material matrices.
The implementation of the full-integration model into Abaqus seems to be more

complicated because this model formulation uses the information from all eight
integration points. Possible ways to implement these models could be the use of
common blocks in UMAT FORTRAN code or user-defined elements. However, it
is decided that such an implementation is out of the scope of this project. There-
fore, unfortunately, no validation of the randomly sampled full-integration models
could be made on a lattice with multiple cells.
If the full-integration model capable of explaining the stress-strain relationship

perfectly was implemented, there could still occur issues and deviations from the
full finite element calculation. For instance, there could be bending moments at
the lattice corners. How big the effect of such moments would be has to be further
investigated. In this project, the moments are simply neglected.
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5
Conclusion

In summary, multiple models for the BCC lattice geometry are developed in this
project. On the one hand, there is the quasi-isotropic model developed using sim-
ple boundary conditions. This type of modeling is also used in the literature. The
implementation into Abaqus and the validation tests on bigger lattice structures
show that such a model has its limits.
On the other hand, a new technique is developed which tries to generate surro-

gate models of the lattice structure able to predict more general load cases. This
is done by randomly sampling the boundary conditions and then training a meta-
model on such generated data. For this approach, two types of representative
cube elements are tested. Firstly, the full-integration elements and secondly, the
reduced-integration elements. The errors of the full-integration model (calculated
on validation data sets) suggest that the model can explain the stress-strain rela-
tionship perfectly. The reduced-integration model cannot do that in a satisfactory
manner. The implementation of the full-integrationmodel and therefore its valida-
tion on big lattices exceeds the scope of this project and is therefore not presented
in this work. The implementation of the reduced-integration models is carried out
in Abaqus. However, as already visible in its inability of explaining the stress-strain
data, the errors of its implementation are also high.

5.1 Outlook

In the future, the implementation of the full-integration model into a finite ele-
ment package should be considered. By doing so, a verification of this modeling
technique could finally be made. Also, possible issues of this approach for example
with the setting of the boundary conditions could then be further investigated. A
different approach to generate a (maybe even better) metamodel could also be to
not only train the model on one lattice cell but for example on a 2x2x2 cluster of
cells. In this case the boundary effects between the lattice cells could probably be
incorporated into the model.
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5 Conclusion

Once a successful implementation is made possible, one could even think of ap-
plying a metamodel not only for a single BCC geometry but also to explain the
variations of different parameters of the structure. Also, the application to com-
pletely different kinds of lattice structures can be imagined. Challenging problems
could arise for lattice cells with not only corners but also edges on the boundaries
of the cell.
Additionally, it could also be feasible to incorporate geometrical or material non-

linearity into the surrogate model. In theory, the machine learning approach used
in this project allows for high flexibility, given enough data is generated in a me-
chanically compatible manner.
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A.1 Authors

Chapter Name

1 Introduction Fabian Jüngling

2 Methods Christian Hauschel

3 Results Fabian Jüngling

4 Discussion Christian Hauschel

5 Conclusion Christian Hauschel & Fabian Jüngling

Table A.1: Contribution of the authors to the different parts of this report.

A.2 Code Manual

See the next pages.
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Code Manual 1

Code Manual

Folder & File Structure

Code

├───code 
│   │   main_data_generation.m    # generates the input data for modeling 
│   │   main_evaluate_model.m     # load and evaluate a model on data 
│   │   main_surrogate_modeling.m # calculates surrogate model on data 
│   │ 
│   ├───data_generation 
│   │       cleanDir.m            # cleans the specified directory of all files 
│   │       cube_rf.m             # run cube force BC simulation 
│   │       cube_u.m              # run cube displacement BC simulation 
│   │       lattice.m             # run lattice simulation 
│   │       parameters.m          # set here the parameters of the simulations 
│   │       results_cube_rf.py    # extracts data from cube_rf odb 
│   │       results_cube_u.py     # extracts data from cube_u odb 
│   │       results_lattice.py    # extracts data from lattice odb 
│   │ 
│   └───surrogate_modeling 
│           deStandardize.m       # reverses standardization by the function "standardize" 
|           elastic_model.m       # fits an elastic model (iso-, ortho-, anisotropic) to the data. 
│           kriging.m             # kriging modeling settings 
|           linear_model.m        # calculates the stress according to the linear isotropic 
│           lra.m                 # LRA modeling settings 
│           mises.m               # calculates equivalent measures according to Mises 
│           mlr.m                 # calculate multivariate linear regression (MLR) model 
│           mlr_evaluate.m        # evaluate MLR model 
|           myDenormalize.m       # denormalizes data normalized by "myNormalize". 
│           myNormalize.m         # function to the normalize data 
│           nn.m                  # (experimental) neural network modeling settings 
│           pce.m                 # PCE modeling settings 
│           pck.m                 # PCK modeling settings 
|           simple_model.m        # simple custom model for reduced elements. 
│           standardize.m         # function to the standardize data 
│           svr.m                 # SVR modeling settings 
│           validation_error.m    # calculates validation error 
│ 
│───uqlab 
│      │  
     # etc.

Temp Folder
In this directory, all the Abaqus input files are located. Here, the simulation and output files get stored.

│ cube_rf_000.inp # cube input file with force BC 
# etc.: other variants... 
│ cube_u_000.inp  # cube input file with displacement BC 
# etc.: other variants... 
│ tetra_002.inp   # lattice input file 
# etc.: other variants...

Folder & File Structure
Code
Temp Folder

Installation
Usage

Data Generation
Surrogate Modeling



Code Manual 2

Installation
 Put folder the  temp  to  C:\  or change the  PATH  variable in the script  code\data_generation\parameters.m

 Do not change the relative folder structure of the other directories

Usage

Data Generation
1. Change parameters in  code\data_generation\parameters.m

2. Run  code\main_data_generation.m

Surrogate Modeling
 Change parameters in the parameters section in code\main_surrogate_modeling.m  and also in the 

corresponding file for the chosen modeling type (e.g. for PCE code\surrogate_modeling\pce.m )

 Run  code\main_surrogate_modeling.m



Bibliography

[1] E. Alabort, D. Barba, and R. C. Reed. “Design of Metallic Bone by Additive
Manufacturing.” In: Scripta Materialia 164 (Apr. 15, 2019), pp. 110–114.

[2] T. Alwattar and A.Mian. “Development of an ElasticMaterial Model for BCC
Lattice Cell Structures Using Finite Element Analysis and Neural Networks
Approaches.” In: Journal of Composites Science 3.2 (Apr. 1, 2019), p. 33.

[3] Ansys. How to Simulate and Design the Microstructures of Composites and
Other Complex Materials. 2019. url: https://www.ansys.com/blog/
how-to-simulate-microstructures-composites (visited on 06/23/2020).

[4] L. J. Gibson andM. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed.
Cambridge Solid State Science Series. Cambridge: Cambridge University
Press, 1997.

[5] C. Lataniotis, D. Wicaksono, S. Marelli, and B. Sudret. UQLab User Manual –
Kriging (Gaussian Process Modeling). Chair of Risk, Safety and Uncertainty
Quantification, ETH Zurich, Switzerland, 2019, p. 74.

[6] M. H. Luxner, J. Stampfl, and H. E. Pettermann. “Finite Element Model-
ing Concepts and Linear Analyses of 3D Regular Open Cell Structures.” In:
Journal of Materials Science 40.22 (Nov. 1, 2005), pp. 5859–5866.

[7] T. Maconachie et al. “SLM Lattice Structures: Properties, Performance, Ap-
plications and Challenges.” In:Materials & Design 183 (Dec. 5, 2019), p. 108137.

[8] S. Marelli and B. Sudret. UQLab User Manual – Polynomial Chaos Expan-
sions. Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich,
Switzerland, 2019, p. 66.

[9] S. Marelli and B. Sudret. “UQLab: A Framework for Uncertainty Quantifi-
cation in MATLAB.” In: The 2nd International Conference on Vulnerability
and Risk Analysis and Management (ICVRAM 2014). University of Liver-
pool, United Kingdom, 2014, pp. 2554–2563.

https://www.ansys.com/blog/how-to-simulate-microstructures-composites
https://www.ansys.com/blog/how-to-simulate-microstructures-composites


Bibliography

[10] MathWorks.Mvregress –MATLABDocumentation.url: https://ch.mathworks.
com/help/stats/mvregress.html (visited on 06/19/2020).

[11] K. H. Matlack, A. Bauhofer, S. Krödel, A. Palermo, and C. Daraio. “Com-
posite 3D-Printed Metastructures for Low-Frequency and Broadband Vibra-
tion Absorption.” In: Proceedings of the National Academy of Sciences 113.30
(July 26, 2016), pp. 8386–8390.

[12] S. L. Omairey, P. D. Dunning, and S. Sriramula. “Development of an ABAQUS
Plugin Tool for Periodic RVE Homogenisation.” In: Engineering with Com-
puters 35.2 (Apr. 2019), pp. 567–577.

[13] E. Ptochos and G. Labeas. “Elastic Modulus and Poisson’s Ratio Determi-
nation of Micro-Lattice Cellular Structures by Analytical, Numerical and
Homogenisation Methods.” In: Journal of Sandwich Structures & Materials
14.5 (Sept. 1, 2012), pp. 597–626.

[14] E. Torre, S. Marelli, and B. Sudret.UQLab UserManual – Statistical Inference.
Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzer-
land, 2019, p. 36.

[15] K. Ushijima, W. Cantwell, R. Mines, S. Tsopanos, and M. Smith. “An In-
vestigation into the Compressive Properties of Stainless Steel Micro-Lattice
Structures.” In: Journal of Sandwich Structures & Materials 13.3 (May 1,
2011), pp. 303–329.

[16] H. N. Wadley. “Multifunctional Periodic Cellular Metals.” In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 364.1838 (Jan. 15, 2006), pp. 31–68.

[17] S. Xu, J. Shen, S. Zhou, X. Huang, and Y. M. Xie. “Design of Lattice Struc-
tures with Controlled Anisotropy.” In:Materials & Design 93 (Mar. 5, 2016),
pp. 443–447.

34

https://ch.mathworks.com/help/stats/mvregress.html
https://ch.mathworks.com/help/stats/mvregress.html



	1 Introduction
	1.1 Literature Review
	1.2 Objective of This Project

	2 Methods
	2.1 Geometry, Mesh and Materials
	2.2 Simple Boundary Condition Modeling
	2.3 Random Boundary Condition Modeling
	2.3.1 Lattice Cell
	2.3.2 Cube Element 1
	2.3.3 Cube Element 2
	2.3.4 Surrogate Model
	2.3.5 Reduced-Integration Modeling
	2.3.6 Mathematical Tools for Surrogate Modeling
	2.3.7 Code Verification


	3 Results
	3.1 Training and Validation Errors of the Random Boundary Condition Models
	3.1.1 Full-Integration Model
	3.1.2 Reduced-Integration Model

	3.2 Model Implementation and Verification
	3.2.1 Implementation into Abaqus
	3.2.2 Results


	4 Discussion
	4.1 Simple Boundary Condition Modeling
	4.2 Random Boundary Condition Modeling
	4.2.1 Implementation of the Full-Integration Model into Abaqus


	5 Conclusion
	5.1 Outlook

	A Appendix
	A.1 Authors
	A.2 Code Manual

	Bibliography

