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Green, low-risk design 

• Engineering simulation used to resolve conflict between 
structural integrity, energy consumption and cost 
– Design optimization using computation solid mechanics models 

 

• Elegant successful design implies 
– Efficient use of materials 

– High credibility for simulation 

 

• ‘Model credibility is reflected by the willingness of persons to 
base decisions on information obtained from the model’1 

 

 

1. Schruben, L.W., Establishing the credibility of simulations, Simulation, 34:101-105, 1980. 
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Is this model good enough? 

• Strain gauge result 

– 252 ± 9  

• Finite element analysis 

– 245  
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Would you fly with this engine? 

Patterson, E.A., Brailly, P., Taroni, M., 2006, ‘High frequency quantitative photoelasticity applied to jet engine components’, Exptl. Mech., 46(6):661-668  
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ADVISEADVISE        Would you have this heart valve implanted? 
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Howard, I. C., Patterson, E.A., Yoxall, A., 2003, ‘On the opening mechanism of the aortic valve: some observations from simulations’, J. Medical Engineering & 
Technology, 27(6):259-267. 
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What  is acceptable? 

• Hume [1748] suggested that observational evidence will                       
never support any hypothesis about the unobserved. 
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Hume, D., 1748 [1999], An enquiry concerning human understanding. Oxford Philosophical Texts, Oxford University 
Press, Oxford, edited by T.L. Beauchamp 
Popper, K., 1959, The logic of scientific discovery, Hutchinson, London. 
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What  is acceptable? 

• Hume [1748] suggested that observational evidence will                       
never support any hypothesis about the unobserved. 

 

More pragmatic approach required... 

 

• Popper [1959] proposed that observational evidence cannot prove a 
hypothesis correct, but it can demonstrate its inappropriateness or falsity 

 

• Implies that there is always a possibility of making a mistake when 
accepting [or rejecting] a hypothesis 

14 

Hume, D., 1748 [1999], An enquiry concerning human understanding. Oxford Philosophical Texts, Oxford University 
Press, Oxford, edited by T.L. Beauchamp 
Popper, K., 1959, The logic of scientific discovery, Hutchinson, London. 
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Experimental mechanics 

• Validity of computational solid mechanics models should be treated  in 
manner analogous to scientific hypotheses 

– Recognise that observational [experimental] data cannot prove its validity 

– Increasing body of evidence can increase degree of belief in the model1 

 

• obvious that current practices, based on the strain value at a small 
number of locations, are inadequate 

 

15 

1. Audi, R., 2011, Epistemology: a contemporary introduction to the theory of knowledge, 3rd edition, Routledge, New York. 
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Experimental mechanics 

• Validity of computational models is analogous to scientific hypotheses 

– Recognise that observational [experimental] data cannot prove its validity 

– Increasing body of evidence can increase degree of belief in the model1 

 

• obvious that current practices, based on the strain value at a small 
number of locations, are inadequate 

 

• until now, obviousness over-powered by cost of experimental data  

– alleviated by new technologies e.g  DIC, DVC, ESPI & TSA 

 and, lack of methods for quantitative comparisons of full-field data 

– Different  orientation,  coordinate system, scale, pitch of data  

– Resolved by use of image decomposition2 

• Reduces dimensionality of data & is invariant to rotation, scale & translation 

16 

1. Audi, R., 2011, Epistemology: a contemporary introduction to theory of knowledge, 3rd ed., Routledge, New York. 
2. Wang, W., Mottershead, J.E., Sebastian, C.M., Patterson, E.A., 2011, Shape features and finite element model updating from full-field strain data, Int. J. 
Solids Struct. 48(11-12), 2011, 1644-1657. 
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ADVISEADVISE Massive datasets: >105 values 

Composite  
tie bar 

3D digital image 
correlation 

FEA model 

Conway, A.R., Xiao, X., 2010, Implementing a Finite Element Module for Fatigue 
Damage Modelling in Fiber Reinforced Composite Materials, Proc. 25th Tech. Conf. Am. 
Soc. Composites, Dayton, Ohio, (2):1173-1783. 
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ADVISEADVISE Validation procedure 

Original Experimental Strain Map
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ADVISEADVISE Crash test ? 
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ADVISEADVISE Experimental set-up 
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Bonnet liner painted with speckle pattern Bonnet liner: short fibres in polyamide matrix 

Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using 
Shape Descriptors, J. Strain Analysis, 49(4): 212-223. 

Projectile:  50mm diameter 
 125g  polyethylene  
 Speed: 70m/s (250km/hr) 
 Energy: 300J 



 3rd International Workshop on Validation of Computational Mechanics Models - Munich - June 12th,2014 

ADVISEADVISE Impact on composite bonnet liner 
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Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using 
Shape Descriptors, J. Strain Analysis, 49(4): 212-223. 
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ADVISEADVISE About 0.05 milliseconds before impact 
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Projectile videos/Projectile videos/SS_482_C001H001S0001.cih
F:/my work/vanessa/ke workshops/munich 2014/patterson/Projectile videos/Projectile videos/SS_482_C001H001S0001.cih
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Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using 
Shape Descriptors, J. Strain Analysis, 49(4): 212-223. 

Data Processing 

26 

6
0

 m
ill

is
ec

o
n

d
s 

   
5

0
 m

ill
is

ec
o

n
d

s 
   

 4
0

 m
ill

is
ec

o
n

d
s FE Results                                    DIC Results                 Reconstruction of DIC Results 



 3rd International Workshop on Validation of Computational Mechanics Models - Munich - June 12th,2014 

ADVISEADVISEAdaptive Geometric Moment Descriptors 
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Matching FE nodes (grey dots) & DIC grids (black lines) 

Iso-u & iso-v parametric coordinates 

Correlation coefficient between out-of-plane 

displacements from DIC and their reconstructions 

from shape descriptors 

Mapping bonnet surface from 3D space to a 2D planar parametric domain isomorphically enables the 

utilisation of image decomposition techniques defined on planar domains via Gram–Schmidt 

orthogonalisation. 
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ADVISEADVISE DIC Shape descriptors 
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Six largest shape descriptors 

29 

AGMDs numbers 1, 6, 2, 3, 5, and 8 (clockwise from top left) representing measured (solid lines) 
and simulation (broken lines) data with the corresponding kernel functions shown as insets. 
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ADVISEADVISE Comparison for validation of model 
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Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using 
Shape Descriptors, J. Strain Analysis, 49(4): 212-223. 
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ADVISEADVISEEuclidean distance between feature vectors 

32 

1
st

 m
a

x.
 +

ve
 z

-d
is

p
. 

1
st

 m
a

x.
 -

ve
 z

-d
is

p
. 

2
n

d
 m

a
x.

 +
ve

 z
-d

is
p

. 

2
n

d
 m

a
x.

 -
ve

 z
-d

is
p

. 

3
rd

  m
a

x.
 +

ve
 z

-d
is

p
. 



 3rd International Workshop on Validation of Computational Mechanics Models - Munich - June 12th,2014 

ADVISEADVISE Model limitations 
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Conclusions 

• DIC and FE data generated for high velocity (70m/s) relatively low 
energy (50-300J) impact 

– Displacement field for majority of 1m2 area at 0.2ms intervals for 0.1s 
 

• Adaptive Geometric Moment Descriptors (AGMDs) uses to describe 
data fields with reduced dimensionality & fidelity 

– 95% correlation on reconstruction 
 

• Explored comparison methodologies 

– Simulation vs. Experiment feature vector elements as function of time 

– Difference of feature vector elements as function of time 

– Eulerian distance between feature vectors as a function of time 
 

• Model limitations 

– Damage propagation 

– Boundary conditions 

34 
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