

Comparison of displacements fields from high speed impacts

Eann A. Patterson*

A.A. Griffith Chair of Structural Materials & Mechanics, University of Liverpool Hsue-Shen Tsien Professor of Engineering Science, Institute of Mechanics, Chinese Academy of Sciences

* Royal Society Wolfson Research Merit Award Holder

Outline

- Opening remarks on need for comprehensive validation
- VANESSA validation protocol
- High-speed impact tests on a bonnet liner
- Conclusions

Green, low-risk design

- Engineering simulation used to resolve conflict between structural integrity, energy consumption and cost
 - Design optimization using computation solid mechanics models

• Elegant successful design implies

- Efficient use of materials
- High credibility for simulation
- 'Model credibility is reflected by the willingness of persons to base decisions on information obtained from the model'¹

^{1.} Schruben, L.W., Establishing the credibility of simulations, *Simulation*, 34:101-105, 1980.

Is this model good enough?

- Strain gauge result
 - $-252 \pm 9 \ \mu\epsilon$
- Finite element analysis
 - 245 με

Would you fly with this engine?

Patterson, E.A., Brailly, P., Taroni, M., 2006, 'High frequency quantitative photoelasticity applied to jet engine components', Exptl. Mech., 46(6):661-668

Would you have this heart valve implanted?

Howard, I. C., Patterson, E.A., Yoxall, A., 2003, 'On the opening mechanism of the aortic valve: some observations from simulations', J. Medical Engineering & Technology, 27(6):259-267.

What is acceptable?

• Hume [1748] suggested that observational evidence will never support any hypothesis about the unobserved.

Hume, D., 1748 [1999], *An enquiry concerning human understanding*. Oxford Philosophical Texts, Oxford University Press, Oxford, edited by T.L. Beauchamp Popper, K., 1959, *The logic of scientific discovery*, Hutchinson, London.

What is acceptable?

• Hume [1748] suggested that observational evidence will never support any hypothesis about the unobserved.

More pragmatic approach required...

- Popper [1959] proposed that observational evidence cannot prove a hypothesis correct, but it can demonstrate its inappropriateness or falsity
- Implies that there is always a possibility of making a mistake when accepting [or rejecting] a hypothesis

Hume, D., 1748 [1999], *An enquiry concerning human understanding*. Oxford Philosophical Texts, Oxford University Press, Oxford, edited by T.L. Beauchamp Popper, K., 1959, *The logic of scientific discovery*, Hutchinson, London.

Experimental mechanics

- Validity of computational solid mechanics models should be treated in manner analogous to scientific hypotheses
 - Recognise that observational [experimental] data cannot prove its validity
 - Increasing body of evidence can increase degree of belief in the model¹
- obvious that current practices, based on the strain value at a small number of locations, are inadequate

1. Audi, R., 2011, *Epistemology: a contemporary introduction to the theory of knowledge*, 3rd edition, Routledge, New York.

Experimental mechanics

- Validity of computational models is analogous to scientific hypotheses
 - Recognise that observational [experimental] data cannot prove its validity
 - Increasing body of evidence can increase degree of belief in the model¹
- obvious that current practices, based on the strain value at a small number of locations, are inadequate
- until now, obviousness over-powered by cost of experimental data
 - alleviated by new technologies e.g DIC, DVC, ESPI & TSA
 - and, lack of methods for quantitative comparisons of full-field data
 - Different orientation, coordinate system, scale, pitch of data
 - Resolved by use of image decomposition²
 - Reduces dimensionality of data & is invariant to rotation, scale & translation

1. Audi, R., 2011, *Epistemology: a contemporary introduction to theory of knowledge*, 3rd ed., Routledge, New York.

2. Wang, W., Mottershead, J.E., Sebastian, C.M., Patterson, E.A., 2011, Shape features and finite element model updating from full-field strain data, Int. J. Solids Struct. 48(11-12), 2011, 1644-1657.

Massive datasets: >10⁵ values

Experimental set-up

Bonnet liner: short fibres in polyamide matrix

Bonnet liner painted with speckle pattern

Projectile: 50mm diameter 125g polyethylene Speed: 70m/s (250km/hr) Energy: 300J

Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using Shape Descriptors, J. Strain Analysis, 49(4): 212-223.

Impact on composite bonnet liner

Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using Shape Descriptors, *J. Strain Analysis*, 49(4): 212-223.

About 0.05 milliseconds before impact

Data Processing

Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using Shape Descriptors, J. Strain Analysis, 49(4): 212-223.

Adaptive Geometric Moment Descriptors

Mapping bonnet surface from 3D space to a 2D planar parametric domain isomorphically enables the utilisation of image decomposition techniques defined on planar domains via Gram–Schmidt orthogonalisation.

Matching FE nodes (grey dots) & DIC grids (black lines)

Correlation coefficient between out-of-plane displacements from DIC and their reconstructions from shape descriptors

DIC Shape descriptors

Six largest shape descriptors

AGMDs numbers 1, 6, 2, 3, 5, and 8 (*clockwise from top left*) representing measured (solid lines) and simulation (broken lines) data with the corresponding kernel functions shown as insets.

Largest four of 20 shape descriptors

Comparison for validation of model

Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W, 2013, Analysis of Displacement Fields from a High Speed Impact using Shape Descriptors, J. Strain Analysis, 49(4): 212-223.

Euclidean distance between feature vectors

Model limitations

Conclusions

• DIC and FE data generated for high velocity (70m/s) relatively low energy (50-300J) impact

- Displacement field for majority of 1m² area at 0.2ms intervals for 0.1s
- Adaptive Geometric Moment Descriptors (AGMDs) uses to describe data fields with reduced dimensionality & fidelity
 - 95% correlation on reconstruction

• Explored comparison methodologies

- Simulation vs. Experiment feature vector elements as function of time
- Difference of feature vector elements as function of time
- Eulerian distance between feature vectors as a function of time

• Model limitations

- Damage propagation
- Boundary conditions

Acknowledgements

- Eann Patterson is a holder of a Royal Society Wolfson Research Merit Award
- ADVISE was a Seventh Framework Programme Collaborative Project within Theme 7: Transportation including Aeronautics
 - ADVISE is funded by EU FP7 (grant no. 218595) & by the partners:

- The author gratefully acknowledges contributions by:
 - Erwin Hack & Mara Feligiotti, EMPA
 - George Lambeas, University of Patras
 - John Mottershead, Chris Sebastian, Sarah Tan & Victor Wang, University of Liverpool
 - Thorsten Siebert & Hans Reinhard Schubach, Dantec Dynamics
 - Andrea Davighi & Maurice Whelan, JRC-ICHP
 - Richard Burguete, Airbus
 - Alexander Ihle, HPS
 - Andrea Pipino, CRF

ADVANCED DYNAMIC VALIDATION BY INTEGRATING SIMULATION & EXPERIMENTATION

